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Remarks, Questions and Exercises. 

Based on Quantum Mechanics, The Theoretical Minimum  by Susskind, The Feynman 

Lectures on Physics and The Principles of Quantum Mechanics by Dirac. 

Below I adopt the Lecture System of Susskind. The book of Susskind I consider to be a good 

introduction into the subject matter. Due to the focus on two-state spin particles the book 

presents a coherent picture. 
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Lecture 1. Systems and Experiment, page 1 
 

1.1 Quantum Mechanics is Different, page 11 
Lecture 1 is about Systems and Experiments. In this lecture Susskind explains why quantum 

mechanics is different. Spins and qubits are introduced illustrated by an experiment which is 

never gentle. Classical and quantum mechanical propositions are considered. Bras, kets, 

inner products and orthonormal bases are explained. 

1.2 Spins and Qubits, page 3 
In the book, spin is paid a lot of attention to.  

1.3 An Experiment, page 4 
The coin is introduced again. With the coin the idea of state  and spin is explained. 

1.4 Experiments Are never Gentle, page 12 
The basic idea explained is: experiments are always invasive. 

1.5 Propositions, page 13 
Susskind explained Propositions starting with Boolean logic. 

 
1 Page numbers of Quantum Mechanics 
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1.6 Testing Classical Propositions, page 16 
A quantum system of a single spin is used for testing proposition. 

1.7 Testing Quantum Propositions, page 18 
In this section, the logical difference between the classical and quantum concept of the state 

of a system is discussed. 

1.8 Mathematical Interlude: Complex Numbers, page 21 
Here Susskind rehearsed the concept of complex numbers. 

The vector notation and the Euler notation are given. 

1.9 Mathematical Interlude: Vector Spaces, page 24 

1.9.1 Axioms, page 24 

As explained by Susskind, the space of states in a classical system is a mathematical set. In 

quantum mechanics the space of states is a vector space. 

1.9.2 Functions and Column Vectors, page 27 

In this section concrete examples of complex vector spaces are given. 

1.9.3 Bras and Kets, page 28 

The complex conjugate vector space is introduced. 

Note: Bras, ⟨|, and kets, |⟩,  were invented by Dirac. These represent a remarkably effective 

and efficient toolkit to deal with the mathematical operations in Quantum Mechanics. Bras 

mean bra vectors and kets mean ket vectors. Chapter I and II of Dirac give the introduction 

into ket and bra vectors. To learn more about Dirac I recommend reading of the biography 

“The Strangest Man, the hidden life of Paul Dirac, quantum genius” by Farmelo. Also, the 

interview with Dirac in “QED and the men who made it” by Schweber is special. 

For additional reading on the application of bra- and ket vectors see The Feynman Lectures 

on Physics III. To learn also more about Feynman, I recommend “Genius, The Life and Science 

of Richard Feynman” by Gleick. In addition, “Surely, You’re Joking, Mr Feynman!” edited by 

Hutchings. And as a follow-up “What Do You Care What Other People Think” by Leighton. 

1.9.4 Inner Products, page 30 

On top of page 31, Susskind presents: 

 ⟨𝐵|𝐴⟩ = ⟨𝐴|𝐵⟩∗ . 

 ⟨𝐵|𝐴⟩ is given by row and column vectors and the inner product is calculated: 

 ⟨𝐵|𝐴⟩ = ∑ 𝛽𝑖
∗5

𝑖 𝛼𝑖, (1.2). 

 ⟨𝐵|𝐴⟩∗ = ∑ 𝛽𝑖
5
𝑖 𝛼𝑖

∗.  

With ⟨𝐴|𝐵⟩∗ 

 ⟨𝐴|𝐵⟩ = ∑ 𝛽𝑖
5
𝑖 𝛼𝑖

∗ . 

Consequently  

 ⟨𝐵|𝐴⟩ = ⟨𝐴|𝐵⟩∗. 
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Exercise 1.1 About the axioms for inner products, page 31 
a) Using the axioms for inner products, prove 
{⟨𝐴| + ⟨𝐵|}|𝐶⟩ = ⟨𝐴|𝐶⟩ + ⟨𝐵|𝐶⟩.       (L1.1) 
Axioms: 
1. They are linear 
⟨𝐶|{|𝐴⟩ + |𝐵⟩} = ⟨𝐶|𝐴⟩ + ⟨𝐶|𝐵⟩  
2. Interchanging bras and kets corresponds to complex conjugation: 
⟨𝐵|𝐴⟩ = ⟨𝐴|𝐵⟩∗  
Proof of a): 
The complex conjugate of the left-hand side of (L1.1) 

{⟨𝐴| + ⟨𝐵|}|𝐶⟩ = ⟨𝐶|{ |𝐴⟩ + |𝐵⟩}∗ = ⟨𝐶|𝐴⟩∗ + ⟨𝐶|𝐵⟩∗ = ⟨𝐴|𝐶⟩ + ⟨𝐵|𝐶⟩. 
b) Prove ⟨𝐴|𝐴⟩ is a real number. 
Axiom 2 gives ⟨𝐴|𝐴⟩ = ⟨𝐴|𝐴⟩∗. Suppose ⟨𝐴|𝐴⟩ is a complex number. ⟨𝐴|𝐴⟩∗ is the complex conjugate. When 
a complex number equals its complex conjugate, the imaginary part of that complex number must be zero. 
So ⟨𝐴|𝐴⟩  is a real number. 
A complex number can be represented by: 
 𝑎 + 𝑖𝑏 , 
where {𝑎, 𝑏 ∈ ℝ}. 
With the complex conjugate of a complex number equals the complex number: 
 (𝑎 + 𝑖𝑏)∗ = 𝑎 − 𝑖𝑏 = 𝑎 + 𝑖𝑏 → 𝑏 = 0. 
Note: Dirac page 21. 

 

 

Exercise 1.2 Application of the axioms for inner products, page 32 
Show that the inner product defined by Eq.(1.2)- Eq.(1.2) refers to the book of Susskind- satisfies all the 
axioms of inner product. The axioms are given in Exercise 1.1. 
a). Axiom 1. 

𝛾1
∗𝛾2
∗… . 𝛾𝑛

∗ {(

𝛼1
𝛼2
𝛼𝑛
) + (

𝛽1
𝛽2
𝛽𝑛

)} = 𝛾1
∗𝛼1 + 𝛾2

∗𝛼2 +⋯𝛾𝑛
∗𝛼𝑛 + 𝛾1

∗𝛽1 + 𝛾2
∗𝛽2 +⋯𝛾𝑛

∗𝛽𝑛   

and 
b). Axiom 2. 
⟨𝐵|𝐴⟩ = 𝛽1

∗𝛼1 + 𝛽2
∗𝛼2 +⋯𝛽𝑛

∗𝛼𝑛, 
and 
⟨𝐴|𝐵⟩∗ = 𝛼1

∗∗𝛽1
∗ + 𝛼2

∗∗𝛽2
∗ +⋯𝛼𝑛

∗ ∗𝛽𝑛
∗ = 𝛼1𝛽1

∗ + 𝛼2𝛽2
∗ +⋯𝛼𝑛𝛽𝑛

∗ . 

 

 

This section is concluded with the definitions of normalized and orthogonal vectors. 

1.9.5 Orthonormal Basis, page 32 

Remarks: 

  |𝐴⟩  =  ∑ 𝛼𝑖𝑖 |𝑖⟩ , (Eq. 1.3), 

 where 𝛼𝑖 are complex numbers. 

 ⟨𝑗|𝐴⟩ = ∑ ⟨𝑗|𝛼𝑖|𝑖⟩𝑖  =  ∑ 𝛼𝑖⟨𝑗|𝑖⟩𝑖 , 

where ⟨𝑗|𝑖⟩  = 𝛿𝑖𝑗 so ⟨𝑗|𝐴⟩  = 𝛼𝑗.  

Eq. (1.3) can be written in an elegant form. Let us look for this form. One way to obtain this 

is: 

 |𝐴⟩ = ∑ 𝛼𝑖𝑖 |𝑖⟩  =  ∑ |𝑖⟩𝛼𝑖𝑖  with 𝛼𝑖 = ⟨𝑖|𝐴⟩ so |𝐴⟩  =  ∑ |𝑖⟩⟨𝑖|𝐴⟩𝑖 . 

The other way: we assume 

 |𝐴⟩  =  ∑ |𝑖⟩⟨𝑖|𝐴⟩𝑖  to be correct. 



9 
 

Now ⟨𝑗|𝐴⟩  = ⟨𝑗| ∑ |𝑖⟩⟨𝑖|𝐴⟩𝑖 = ∑ ⟨𝑗|𝑖⟩⟨𝑖|𝐴⟩ = ⟨𝑗|𝐴⟩𝑖 ,  

since ⟨𝑗|𝑖⟩ = 𝛿𝑖𝑗 the Kronecker delta. 

Plug Eq. (1.5) into Eq. (1.3): 

 |𝐴⟩ = ∑ ⟨𝑖|𝐴⟩𝑖 |𝑖⟩ . 

This expression rewrites Susskind into 

 |𝐴⟩ = ∑ |𝑖⟩⟨𝑖|𝐴⟩𝑖 .  

Elegant indeed, why? Well, it is basically about the outer product. We will learn about the 

outer product in section 7.2. 

Lecture 2. Quantum States. 

 
States and vectors are discussed. Spin states along the x-axis, the y-axis and the z-axis are 

given attention. The number of independent parameters and the representation of spin 

states as column vectors are introduced. 

2.1 States and Vectors 
Note: This lecture starts with a reflection on the unpredictability and the completeness of 

Quantum Mechanics. Susskind adopts the unpredictability of QM. Of course, there is no 

ultimate answer. An interesting view on the subject matter is given by Stewart: “Does God 

Play Dice?”. It is all about hidden variables. Also, the book of Smolin is instructive reading in 

this respect: when you need decades of constants to adjust theory to explain experiment you 

could wonder about the need of hidden variables. 

2.2 Representing Spin States 
As mentioned by Susskind the space of states for a single spin has only two dimensions. 

|𝑢⟩ and |𝑑⟩ are chosen as the two orthonormal basic vectors. 

All possible spin states can be represented in a two-dimensional vector space. Top of page 

38. 

With  

 𝐴 = 𝛼𝑢|𝑢⟩ + 𝛼𝑑|𝑑⟩ → 
→ ⟨𝑢|𝐴⟩ = ⟨𝑢|𝛼𝑢|𝑢⟩ + ⟨𝑢|𝛼𝑑|𝑑⟩ = 𝛼𝑢⟨𝑢|𝑢⟩ + 𝛼𝑑⟨𝑢|𝑑⟩.  

With ⟨𝑢|𝑑⟩ = 0, Eq. (2.3), 

 𝛼𝑢 = ⟨𝑢|𝐴⟩. 

The state vector is normalized: ⟨𝐴|𝐴⟩  = 1, consequently 

(⟨𝑢|𝛼𝑢
∗ + ⟨𝑑|𝛼𝑑

∗ )(𝛼𝑢|𝑢⟩ + 𝛼𝑑|𝑑⟩) = 𝛼𝑢
∗𝛼𝑢 + 𝛼𝑑

∗𝛼𝑑 = 1. 

 𝛼𝑢
∗𝛼𝑢 and 𝛼𝑑

∗𝛼𝑑 represent probabilities. Consequently, in this two base vector system, these 

probabilities add up to 1: (2.2). 

2.3 Along the 𝑥 Axis 
Then, Susskind derived the vectors |𝑟⟩ and  |𝑙⟩  along the 𝑥 – axis presented by Eq. 2.5 and 

Eq. 2.6. After deriving vector |𝑟⟩ , one must remember that ⟨𝑙|𝑟⟩ = 0 (the inner product) and 

   𝛼𝑢
∗𝛼𝑢 =

1

2
 and 𝛼𝑑

∗𝛼𝑑 =
1

2
.         (L2.1) 

These equal probabilities are explained by Susskind just above Eq. 2.5.    

The 𝛼’s are complex numbers, and we can illustrate phase ambiguity by representing the 
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complex numbers in polar coordinates(𝑞, 𝜃):  

𝛼𝑢 = 𝑞𝑢𝑒
𝑖𝜃𝑢  and 𝛼𝑑 = 𝑞𝑒

𝑖𝜃𝑑 , 

With (L2.1) we find 𝑞𝑢 = ±
1

√2
 and 𝑞𝑑 = ±

1

√2
, where the minus sign represents a phase shift 

of 𝜋. On page 42 Susskind explains why you can neglect the phase factor 𝑒𝑖𝜃 .  

Now |𝑙⟩: with the same procedure |𝑙⟩ = 𝛽𝑢|𝑢⟩ + 𝛽𝑑ǀ𝑑⟩ and polar coordinates we have:     

 𝛽𝑢 =
1

√2
 and 𝛽𝑑 = −

1

√2
. 

where use has been made of  ⟨𝑙|𝑟⟩ = 0. 

There is no other way to find out about the coefficients used for the vectors |𝑟⟩ and  |𝑙⟩. 

We have 3 equations and 4 unknowns: 

 |𝑟⟩ = 𝛼𝑢|𝑢⟩ + 𝛼𝑑|𝑑⟩ ⟹ 𝛼𝑢
∗𝛼𝑢 + 𝛼𝑑

∗𝛼𝑑 = 1,  

 |𝑙⟩ = 𝛽𝑢|𝑢⟩ + 𝛽𝑑|𝑑⟩ ⟹ 𝛽𝑢
∗𝛽𝑢 + 𝛽𝑑

∗𝛽𝑑 = 1, 

 ⟨𝑙|𝑟⟩ = 0 ⟹ 𝛽𝑢
∗𝛼𝑢 + 𝛽𝑑

∗𝛼𝑑 = 0. 

Exercise 2.1 About orthogonality 
Prove that the vector |𝑟⟩ in Eq. 2.5 is orthogonal to vector |𝑙⟩ in Eq. 2.6: 

 ⟨𝑙|𝑟⟩  = (⟨𝑢|
1

√2
 +  ⟨𝑑|

1

√2
)(
1

√2
|𝑢⟩ −

1

√2
|𝑑⟩ =

1

2
⟨𝑢|𝑢⟩ −

1

2
⟨𝑢|𝑑⟩ +

1

2
⟨𝑑|𝑢⟩ −

1

2
⟨𝑑|𝑑⟩ = 0. 

 

2.4 Along the 𝑦 Axis 

 
About vectors representing spins oriented along the 𝑦 axis. 

Remark: 

Susskind used |𝑖⟩ as a vector for the 𝑦-axis.  Do not confuse this with 𝑖 = √−1. 

Susskind presents the conditions for the vectors representing the spins along the 𝑦-axis. 

From the statistical results of the experiments, Eqs.2.8 and 2.9 are derived. The conditions 

presented in these equations are sufficient to derive Eq.2.10. 

 

Exercise 2.2 About Probabilities 
Prove that ǀ𝑖⟩ and |𝑜⟩ satisfy all the conditions in Eqs. 2.7, 2.8, and 2.9. Are they unique in that respect? 

Eq. 2.7 ⟨𝑖|𝑜⟩  = 0.  ⟨𝑖|𝑜⟩  = (⟨𝑢ǀ
1

√2
+ ⟨𝑑ǀ

−𝑖

√2
)(

1

√2
ǀ𝑢⟩ −

𝑖

√2
ǀ𝑑⟩) =

1

2
−
1

2
= 0. 

Eq.2.8 As an example we take 𝑃𝑢 =< 𝑖|𝑢 >< 𝑢|𝑖 >=
1

2
.  

So  (⟨𝑢|
1

√2
− ⟨𝑑|

𝑖

√2
) |𝑢⟩⟨𝑢| (

1

√2
|𝑢⟩ +

𝑖

√2
|𝑑⟩) =

1

2
. 

Eq. 2.9 As an example  ⟨𝑖|𝑟⟩⟨𝑟|𝑖⟩ =
1

2
. Here we have |𝑟⟩ instead of |𝑢⟩. A bit more complicated but straight 

forward. 

 (⟨𝑢|
1

√2
− ⟨𝑑|

𝑖

√2
) (

1

√2
ǀ𝑢⟩ +

1

√2
ǀ𝑑⟩) (⟨𝑢ǀ

1

√2
+ ⟨𝑑ǀ

1

√2
) (

1

√2
ǀ𝑢⟩ +

𝑖

√2
ǀ𝑑⟩) =

1

2
. 

 

 

Are the vectors |𝑖⟩ and |𝑜⟩  unique? No, they are not. There is phase ambiguity and the 𝛼’s 

are complex.  

Note: Dirac page 22. 

By setting the phase factor equal to 0 and equal to 
𝜋

2
 , the 𝛼’s are real or pure imaginary, 

respectively. I will show this in the next exercise.  
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Exercise 2.3 More about the components of |i> and |o> 
For the moment, forget that Eqs. 2.10 give us working definitions for |𝑖⟩ and |𝑜⟩ in terms of |𝑢⟩ and |𝑑⟩, and 
assume the components 𝛼, 𝛽, 𝛾 and 𝛿 are unknown: 
|𝑖⟩  = 𝛼|𝑢⟩ + 𝛽|𝑑⟩,         
 (L2.2) 
|𝑜⟩  = 𝛾|𝑢⟩ + 𝛿|𝑑⟩.         
 (L2.3) 

a) Use Eqs. 2.8 to show that 𝛼∗𝛼 = 𝛽∗𝛽 = 𝛾∗𝛾 = 𝛿∗𝛿 =
1

2
. 

With (L2.2) and (L2.3): 
⟨𝑜|𝑢⟩ = (⟨𝑢|𝛾∗ + ⟨𝑑|𝛿∗)|𝑢⟩  = 𝛾∗ and ⟨𝑢|𝑜⟩ = ⟨𝑢|(𝛾|𝑢⟩ + 𝛿|𝑑⟩) = 𝛾, 
where use has been made of: ⟨𝑢|𝛾∗|𝑢⟩ and ⟨𝑑|𝛿∗|𝑢⟩ = 0 . 

Furthermore, Eqs. (2.8), ⟨𝑜|𝑢⟩⟨𝑢|𝑜⟩  =
1

2
, and consequently 𝛾∗𝛾 =

1

2
.  

Analogously we obtain 𝛼∗𝛼 = 𝛽∗𝛽 = 𝛿∗𝛿 =
1

2
. 

b) With the result of a) and Eqs. 2.9 show that 𝛼∗𝛽 + 𝛼𝛽∗ = 𝛾∗𝛿 + 𝛾𝛿∗ = 0. 

We know, Eqs. (2.9), that ⟨𝑖|𝑟⟩⟨𝑟|𝑖⟩  =
1

2
.  

Then, with |𝑟⟩ given in Eq. (2.5) and |𝑖⟩ given in (L2.2), we have  

 ⟨𝑖|𝑟⟩⟨𝑟|𝑖⟩ =
1

2
(𝛼∗ + 𝛽∗)(𝛼 + 𝛽) =

1

2
.  

Consequently, (𝛼∗ + 𝛽∗)(𝛼 + 𝛽) = 1. 
From the preceding expression we learn the real part 𝛼∗𝛼 + 𝛽∗𝛽 = 1, and the complex part  
 𝛼∗𝛽 + 𝛼𝛽∗ = 0 . 

We could have used the results under a), ⟨𝑖|𝑢⟩⟨𝑢|𝑖⟩  = 𝛼∗𝛼 =
1

2
 and ⟨𝑖|𝑑⟩⟨𝑑|𝑖⟩  = 𝛽∗𝛽 =

1

2
 . 

Then, the result of ⟨𝑖|𝑟⟩⟨𝑟|𝑖⟩ gives again: 𝛼∗𝛽 + 𝛼𝛽∗ = 0.  

In the same way we obtain, with   ⟨𝑜|𝑟⟩⟨𝑟|𝑜⟩  =
1

2
 :  

 𝛾∗𝛿 + 𝛾𝛿∗ = 0. 
c) Show that 𝛼∗𝛽 and 𝛾∗𝛿 must each be pure imaginary. 

We have shown in a) that 𝛼∗𝛼 = 𝛽∗𝛽 =
1

2
. Hence 𝛼∗𝛽𝛼𝛽∗ =

1

4
.  

Note: set 𝛼 = 𝑎 + 𝑖𝑏 and 𝛽 = 𝑐 + 𝑖𝑑, where {𝑎, 𝑏, 𝑐, 𝑑 ∈ ℝ}. 
Then 𝛼∗𝛼𝛽∗𝛽 = 𝛼∗𝛽𝛼𝛽∗. 
Furthermore with  b) :                     

𝛼𝛽∗ = −𝛼∗𝛽 we find (𝛼∗𝛽)2 = −
1

4
.  

Hence, 𝛼∗𝛽 is pure imaginary. Analogously 𝛾∗𝛿 is pure imaginary. This leads to the conclusion, in general, 
𝛼, 𝛽, 𝛾 and 𝛿 to be complex numbers. Now we have phase ambiguity, and we can choose 𝛼, 𝛾 to be real and 
𝛽, 𝛿 to be imaginary. 
This can be illustrated a little more elegantly with polar coordinates.  

For 𝛼 we write: 𝛼 = 𝑟𝑢𝑒
𝑖𝜃𝑢  and 𝛽 = 𝑟𝑑𝑒

𝑖𝜃𝑑.  

With a) 𝛼∗𝛼 =
1

2
 :  𝑟𝑢 =

1

√2
 and similarly 𝑟𝑑 =

1

√2
. 

Then with (𝛼∗𝛽)2 = −
1

4
 we have 𝑒2𝑖(𝜃𝑑−𝜃𝑢) = −1 =  𝑒𝑖𝜋. So 𝜃𝑑 − 𝜃𝑢 =

𝜋

2
, a sort of relative phase factor. 

Now we choose arbitrarily 𝜃𝑢 = 0 consequently 𝜃𝑑 =
𝜋

2
. Hence 𝛼 is real and 𝛽 is imaginary. The same 

reasoning applies to 𝛾 and 𝛿. 
 

2.5 Counting Parameters. 
What are the number of physically distinct states for a spin? 

Susskind explained the need of just two parameters to specify the spin. 

2.6 Representing Spin States as Column Vectors. 
In this section Susskind presented an example of Ockham’s razor: “…. and we’ll try to choose 

the simplest and most convenient ones we can find.” With “ones” Susskind meant the 

column vector representation of the bra’s and kets.  
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2.7 Putting It All Together 
 

The title of this section reflects the content of this section: a summary of Chapter 2. 

This includes a remark on phase indifference: “The physics of the state-vector is unaffected 

by its overall phase factor”. Exercise 2.3 shows that the relative phase factor cannot be 

ignored.  

 

Dirac: ”Any state of our dynamical system at a particular time can be specified by the 

direction of a bra as well as by the direction of a ket vector. The whole theory will be 

symmetrical in its essentials between bras and kets. 

Lecture 3. Principles of Quantum Mechanics. 
Lecture 3 is about the Principles of Quantum Mechanics, (Hermitian)operators, eigenvalues, 

and eigenvectors. Constructing spin operators is the core of this lecture. The lecture 

concludes with the Spin-Polarization Principle. 

3.1 Mathematical Interlude: Linear Operators 

3.1.1 Machines and Matrices 

In this section linear operators are introduced: Physical observables are described by linear 

operators. Throughout the Lectures, Susskind denote a general operator with 𝑴, for obvious 

reasons. Properties of 𝑴 are presented. 

The operator 𝑴 as a matrix is introduced, Eq.(3.2), and 𝑚𝑘𝑗 = ⟨𝑘|𝑴|𝑗⟩ are the matrix 

elements. 

The way the operator 𝑴 operates on kets and bra’s is explained in some detail. 

On page 54, this is shown with  

 𝑴|𝐴⟩ = |𝐵⟩, 

this expression is written in component form. 

 |𝐴⟩ = ∑ 𝛼𝑗𝑗 |𝑗⟩. 

 |𝐵⟩ is expanded in the same basis: 

 |𝐵⟩ = ∑ 𝛽𝑗|𝑗⟩𝑗 . 

So, 

 𝑴|𝐴⟩ = |𝐵⟩ → ∑ 𝑴𝛼𝑗𝑗 |𝑗⟩ = ∑ 𝑴|𝑗⟩𝑗 𝛼𝑗 = ∑ 𝛽𝑗|𝑗⟩𝑗 . 

Take the inner product of both sides with the bra of one of the basis vectors |𝑘⟩: 

 ∑ ⟨𝑘|𝑴|𝑗⟩𝑗 𝛼𝑗 = ∑ 𝛽𝑗⟨𝑘|𝑗⟩𝑗  , Eq.(3.1), 

where ⟨𝑘|𝑗⟩ = 𝛿𝑘𝑗. 

For 𝑘 ≠ 𝑗 → 𝛿𝑘𝑗 = 0, and for 𝑘 = 𝑗 → 𝛿𝑘𝑗 = 1; the Kronecker delta. 

Then, with Eq.(3.1) and 𝑘 = 𝑗 

 ⟨𝑘|𝑴|𝑘⟩𝛼𝑘 = 𝛽𝑘. 

For 𝑘 ≠ 𝑗, with Eq.(3.1) 

 ∑ ⟨𝑘|𝑴|𝑗⟩𝑗 𝛼𝑗 = 0. 

Now, Eq.(3.3), page 55, 

 ∑ 𝑚𝑘𝑗𝛼𝑗𝑗 = 𝛽𝑘. 

This result differs from ⟨𝑘|𝑴|𝑘⟩𝛼𝑘 = 𝛽𝑘, unless matrix 𝑴 is a matrix with only diagonal 

entries: 
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 ⟨𝑘|𝑴|𝑗⟩𝛼𝑗 = 0, for 𝑘 ≠ 𝑗.  

So, the analysis on pages 54 and 55 remains a bit unclear to me. 

 

3.1.2 Eigenvalues and Eigenvectors 

The definition of the eigenvector and eigenvalues of a linear operator 𝑴 are presented, 

Eq.(3.5). 

An example: 

 𝑴 = (
0 −1
1 0

). 

Then, 

  (
0 −1
1 0

) (
1
𝑖
) = 𝜆 (

1
𝑖
) ⟹ (

−𝑖
1
) = (

𝜆
𝑖𝜆
) ⟹ 𝜆 = −𝑖 ⟹ 𝑖𝜆 = 1. 

Hence, the eigenvalue 𝜆 = −𝑖. 

  

3.1.3 Hermitian Conjugation 

In section 3.1.2 the way 𝑴 operates on bra’s and kets was explained in some detail. There is 

more. To operate 𝑴 on bra’s, complex conjugation is needed. 

Then, Susskind explained the concept of complex conjugation and the definition of 

Hermitian conjugate is introduced. 

On page 61, Susskind presents the consequences of the Hermitian operator 𝑴 : 

 𝑴|𝐴⟩ = |𝐵⟩ , 

then 

 ⟨𝐴|𝑴† = ⟨𝐵| . 

Then, multiply 𝑴|𝐴⟩ = |𝐵⟩ to the left with the bra ⟨𝐵|, and multiply ⟨𝐴|𝑴† = ⟨𝐵| to the 

right with the ket |𝐵⟩, 

 ⟨𝐵|𝑴|𝐴⟩ = ⟨𝐵|𝐵⟩ = ⟨𝐴|𝑴†|𝐵⟩.      (L.3.1.3.1) 

I recall the expression on top of page 31: 

 ⟨𝐵|𝐴⟩ = ⟨𝐴|𝐵⟩∗.        (L.3.1.3.2) 

Plug ⟨𝐴|𝑴† = ⟨𝐵| , and 𝑴|𝐴⟩ = |𝐵⟩, into L(3.1.3.2) 

 ⟨𝐴|𝑴†|𝐴⟩ = ⟨𝐴|𝑴|𝐴⟩∗. 

Assume the kets and bras to be normalized: ⟨𝐴|𝐴⟩ = 1 and ⟨𝐵|𝐵⟩ = 1. 

Plug into (L.3.1.3.1), in ⟨𝐵|𝑴|𝐴⟩ , ⟨𝐴|𝑴† = ⟨𝐵| , then 

 ⟨𝐴|𝑴†𝑴|𝐴⟩ = ⟨𝐵|𝐵⟩ = 1 .          (L.3.1.3.3) 

In addition: 

 ⟨𝐴|𝐴⟩ = 1. 

What kind of operator does 𝑴†𝑴 represent?  

Plug into (L.3.1.3.2), |𝐵⟩ = 𝑴|𝐴⟩  and  ⟨𝐴|𝑴† = ⟨𝐵|.  

The result is,  

 ⟨𝐴|𝑴†|𝐴⟩ = ⟨𝐴|𝑴|𝐴⟩∗.        (L.3.1.3.4) 

What kind of operator is 𝑴 ? A general operator? It should be. (L.3.1.3.4) most probably 

represents an identity. 
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3.1.4 Hermitian Operators 

In this Lecture Susskind writes: “Real numbers play a special role in physics. The results of 

any measurement are real numbers. Sometimes, we measure two quantities, put them 

together with an 𝑖 (forming a complex number) and call this number the result of a 

measurement”.  

Dirac page 35: “ One might think one could measure a complex dynamical variable by 

measuring separately its real and pure imaginary part. But this would involve two 

measurements or two observations, which would be all right in classical mechanics, but 

would not do in quantum mechanics, where two observations in general interfere with one 

another- it is not in general permissible to consider that two observations can be made 

exactly simultaneously, and if they are made in quick succession the first will usually disturb 

the state of the system and introduce an indeterminacy that will affect the second”.  

Question: Will a dialogue Dirac-Susskind help, a dialogue like the one between Democritus 

and Lederman(Lederman)? 

Hermitian operators and the related observables are introduced. 

Susskind proved the eigenvalues of Hermitian operators to be real.  

3.1.5 Hermitian Operators and Orthonormal Bases 

Hermitian operators and orthonormal bases are discussed. 

On page 66 Susskind mentioned the possibility of constructing an orthonormal basis. He 

illustrated this with a two-dimensional case. Then he writes: ”It should be clear that any 

linear combination of the two eigenvectors is also an eigenvector with the same eigenvalue. 

With this much freedom, it is always possible to find two orthonormal linear combinations.” 

Well, I think referring to this two-dimensional case  one linear combination is sufficient. This 

linear combination is constructed with help of a combination of the vectors |𝜆1⟩ and |𝜆2⟩ . Or 

is this what Susskind meant by two linear combinations? 

Or another possibility could be: 

 |𝐴⟩ = 𝛼|𝜆1⟩ + 𝛽|𝜆2⟩,         (L.3.1.5.1) 

 |𝐵⟩ = 𝛾|𝜆1⟩ + 𝛿|𝜆2⟩.         (L.3.1.5.2) 

Now, 

 ⟨𝐴|𝐵⟩ can be 0? Well, 𝛼, 𝛽, 𝛾 and 𝛿 are complex numbers. Analyse the result of the inner 

product ⟨𝐴|𝐵⟩ by representing the complex numbers by a real and an imaginary part. 

See Exercise 3.1 below. 

First, let’s analyse  

 ⟨𝐴|𝐴⟩ → |𝛼|2 + |𝛽|2 = 1. 

 ⟨𝐴|𝜆1⟩⟨𝜆1|𝐴⟩ = |𝛼|
2. 

 ⟨𝐴|𝜆2⟩⟨𝜆2|𝐴⟩ = |𝛽|
2. 

Then 

 ⟨𝐴|𝐴⟩ = ⟨𝐴|𝜆1⟩⟨𝜆1|𝐴⟩ + ⟨𝐴|𝜆2⟩⟨𝜆2|𝐴⟩.      (L.3.1.5.3) 

Hence, 

 ⟨𝐴|𝐴⟩ = ⟨𝐴(|𝜆1⟩⟨𝜆1| +|𝜆2⟩⟨𝜆2|)𝐴⟩. 

Consequently 

 |𝜆1⟩⟨𝜆1| + |𝜆2⟩⟨𝜆2| = 1.        (L.3.1.5.4) 

What kind of machine is represented in (L.3.1.5.4)? 
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Well, in general (L.3.1.5.4) represents 

 ∑ |𝜆𝑖⟩⟨𝜆𝑖| = 1𝑖 ,         (L.3.1.5.5) 

or 

  ∑ |𝑖⟩⟨𝑖| = 1𝑖 , 

see pages 33 and 34. 

 |𝐴⟩ = ∑ |𝑖⟩⟨𝑖|𝐴⟩𝑖 , 

where “|𝑖⟩ is the orthonormal basis of ket vectors labelled |𝑖⟩ .” 

 ⟨𝐴|𝐴⟩ = 1 = ⟨𝐴|∑ |𝑖⟩⟨𝑖|𝐴⟩ →𝑖 ∑ |𝑖⟩⟨𝑖| = 1𝑖 .      (L.3.1.5.6)  

Next: the Exercise 3.1. 
 

Exercise 3.1: About an orthonormal base 
Prove the following: If a vector space is 𝑁-dimensional, an orthonormal basis of 𝑁 vectors can be 
constructed from the eigenvectors (plural, > 1) of a Hermitian operator.  
If a space is 𝑁-dimensional there will be 𝑁 orthonormal vectors.  
I suppose The Fundamental Theorem on page 64 does apply here. 
These orthonormal vectors can be constructed of the eigenvectors of a Hermitian operator. See page 66. 
With two orthonormal eigenvectors |𝜆1⟩ and |𝜆2⟩ of a Hermitian operator, I choose two linear combinations 
 |𝐴⟩ = 𝛼|𝜆1⟩ + 𝛽|𝜆2⟩,  (L3.1.5.1), 
and 
 |𝐵⟩ = 𝛾|𝜆1⟩ + 𝛿|𝜆2⟩, (L3.1.5.2). 
Now, 
 ⟨𝐴|𝐵⟩ = 0. 
Then, 
 𝛼∗𝛾 + 𝛽∗𝛿 = 0 .         (L.3.1.5.7) 
 ⟨𝐴|𝐴⟩ → |𝛼|2 + |𝛽|2 = 1,       (L.3.1.5.8) 
and 
 ⟨𝐵|𝐵⟩ → |𝛾|2 + |𝛿|2 = 1.        (L.3.1.5.9) 
(L.3.1.5.7)- (L.3.1.5.9): four equations and four unknowns →  |𝐴⟩ and  |𝐵⟩ can be constructed. Four 
equations, since (L.3.1.5.7) produces two equations. 
 

 

3.1.6 The Gram-Schmidt Procedure 

In this section  Susskind explains the Gram-Schmidt Procedure. What seems to me a bit 

confusing is an inner product dealt with as a vector. See Figure 3.1, Legenda. 

So, in the legenda, the expression for  𝑉⃗ 2⊥ should read 

 𝑉⃗ 2⊥ = 𝑉⃗ 2 − ⟨𝑉⃗ 2|𝑉⃗ 2⟩𝑣1 .  

I think this to be a bit more elegant or correct. 

Remark: In Lecture 7.2 another approach for the Gram-Schmidt procedure is presented. 

3.2 The Principles 
Susskind states The Principles of Quantum Mechanics(By the way the title of Dirac’s  book) . 

”An important consequence of the principles is as follows: The operators that represent 

observables are Hermitian”. With help of the proof by contradiction and section 3.1.5 this 

can be shown. 

Let us proof it anyway. With the eigenvalues of the operator 𝑳 and the eigenvectors, with 

different eigenvalues, orthogonal, 𝑳 must be Hermitian.  
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Proof 
We presume 𝑳 ≠ 𝑳ϯ and follow the notation of page 65 we write: 
𝑳|𝜆1⟩  = 𝜆1|𝜆1⟩ , and 𝑳|𝜆2⟩  = 𝜆2|𝜆2⟩.  
Now, create the complex conjugate of 𝑳|𝜆1⟩  = 𝜆1|𝜆1⟩ : 

 ⟨𝜆1|𝑳
ϯ = 𝜆1⟨𝜆1|,         (L.3.2.1) 

keep in mind: use has been made of results of an experiment to be real numbers. Consequently, eigenvalue 
of the operator 𝑳 must be a real number(Susskind page 74). 
Now, 𝑳|𝜆2⟩  = 𝜆2|𝜆2⟩.  

Construct the inner product of  ⟨𝜆1|𝑳
ϯ = 𝜆1⟨𝜆1|, (L.3.2.1),  and |𝜆2⟩: 

 ⟨𝜆1|𝑳
ϯ|𝜆2⟩  = 𝜆1⟨𝜆1|𝜆2⟩ .        (L.3.2.2) 

Then,  𝑳|𝜆2⟩  = 𝜆2|𝜆2⟩, and form its inner  product with ⟨𝜆1| : 
 ⟨𝜆1|𝑳|𝜆𝟐⟩ = 𝜆2⟨𝜆1|𝜆2⟩ .        (L.3.2.3)                                                                
Subtract (L.3.2.2) and (L.3.2.3): 

 ⟨𝜆1|𝑳
ϯ|𝜆2⟩ − ⟨𝜆1|𝑳|𝜆𝟐⟩  = 𝜆1⟨𝜆1|𝜆2⟩ − 𝜆2⟨𝜆1|𝜆2⟩.     (L.3.2.4)  

Since the eigenvectors are orthogonal, the right-hand sight of (L.3.2.4) is zero.  

Then, ⟨𝜆1|𝑳
ϯ − 𝑳|𝜆𝟐⟩ = 0. Consequently 𝑳 = 𝑳ϯ → 𝑳 is Hermitian. 

End of Proof. 
 

Remark: 

This is just a part of the proof? Do we have to proof that the set of eigenvectors is complete? 

Well, I consider this not to be that easy, though Susskind states otherwise on page 67: “The 

final part of the theorem states that the eigenvectors are complete. In other words, if the 

space is 𝑁-dimensional, there will be 𝑁 orthonormal eigenvectors. The proof is easy”.  

May the statement be not quite clear with respect to which proof is easy: the completeness 

or the 𝑁 orthonormal eigen vectors or both? Above I focused on the proof of the operator to 

be Hermitian. Having done that, let us try to find an orthonormal base for a 𝑁x𝑁 Hermitian 

operator with for example two eigenvectors with equal eigenvalues. Consequently, we have 

𝑁 − 1 different eigenvalues with eigenvectors orthonormal. We assume two eigenvectors 

|𝜆1⟩ and |𝜆2⟩ to have the same eigenvalue 𝜆. Can we find a new eigenvector normal to |𝜆2⟩? 

We follow Susskind. Consider an arbitrary linear combination of |𝜆1⟩ and |𝜆2⟩: 

|𝐴⟩ = 𝛼|𝜆1⟩ + 𝛽|𝜆2⟩, 𝛼 and 𝛽 ≠ 0. There are two conditions: ⟨𝜆2|𝐴⟩ = 0 and ⟨𝐴|𝐴⟩ = 1. The 

first condition gives us: 

 𝛼⟨𝜆2|𝜆1⟩ + 𝛽⟨𝜆2|𝜆2⟩ = 𝛼⟨𝜆2|𝜆1⟩ + 𝛽 = 0.  

So, 

 ⟨𝜆2|𝜆1⟩ =
−𝛽

𝛼
=
−𝛽𝛼∗

𝛼𝛼∗
, then ⟨𝜆1|𝜆2⟩ =

−𝛼𝛽∗

𝛼𝛼∗
. Reminder: 𝛼𝛼∗ = |𝛼|2.  

The second condition gives us: 

(⟨𝜆1|𝛼
∗ + ⟨𝜆2|𝛽

∗)(𝛼|𝜆1⟩ + 𝛽|𝜆2⟩) = 𝛼
∗𝛼 + 𝛽∗𝛽 + 𝛼∗𝛽⟨𝜆1|𝜆2⟩ + 𝛽

∗𝛼⟨𝜆2|𝜆1⟩ = 1.  

With the expressions for the inner products ⟨𝜆2|𝜆1⟩ and ⟨𝜆1|𝜆2⟩ , derived above, this  

expression becomes: 

|𝛼|2 − |𝛽|2 = 1. We find for 𝛼: |𝛼| = √1 + |𝛽|2 . Is this to expected? Yes, it is. 

I start with |𝜆1⟩ and |𝜆2⟩ to be orthonormal and construct a vector  

 |𝐴⟩ = 𝛼|𝜆1⟩ + 𝛽|𝜆2⟩. 

For this |𝐴⟩ to be normalized we have: 

 |𝛼|2 + |𝛽|2 = 1, 

and  

 |𝛼| and |𝛽| both smaller than 1. 

To visualise this, take two orthonormal basic vectors. Construct the diagonal and normalize 



17 
 

the diagonal vector. To this end, a multiplication factor of 
1

2
√2(< 1) is needed. 

In the case of degeneracy, I need to construct two mutually orthogonal eigenstates |𝐴⟩ and 

|𝜆2⟩ . Furthermore,  ⟨𝐴|𝐴⟩ = 1, |𝛼| and |𝛽| both must be larger than 1. Hence, |𝛼| =

√1 + |𝛽|2 is correct. 

To visualise this case, take two normalized base vectors having an angle of 
𝜋

4
, i.e.      

⟨𝜆2|𝜆1⟩ =
1

2
√2 . To construct a normalized vector |𝐴⟩, a multiplication factor √2(> 1) is 

needed. 

Well, let’s investigate the subject matter in a different way. 

I found above: 

 ⟨𝜆2|𝜆1⟩ =
−𝛽

𝛼
 . 

Then 

 |𝐴⟩ = 𝛼|𝜆1⟩ + 𝛽|𝜆2⟩ = 𝛼(|𝜆1⟩ − ⟨𝜆2|𝜆1⟩|𝜆2⟩).     (L.3.2.5) 

Hence, 

 ⟨𝐴|𝐴⟩ = |𝛼|2(1 − | ⟨𝜆2|𝜆1⟩|
2) ,       (L.3.2.6) 

where use has been made of ⟨𝜆1|𝜆1⟩ = 1 and ⟨𝜆2|𝜆2⟩ = 1. 

Consequently: 

 |𝛼| =
1

√1−| ⟨𝜆2|𝜆1⟩|
2
 . 

Remark:|𝛼| > 1. As mentioned above, for ⟨𝜆2|𝜆1⟩ =
1

2
√2 , |𝛼| = √2 . 

Plug |𝛼|  into (L.3.2.5)  

  |𝐴⟩ =
|𝜆1⟩− ⟨𝜆2|𝜆1⟩|𝜆2⟩

√1−| ⟨𝜆2|𝜆1⟩|
2

 ,        (L.3.2.7) 

where, without loss of generality, an arbitrary phase angle is neglected in 𝛼 . 

Multiply the bra ⟨𝜆2| into (L.3.2.7) and the orthogonality of  |𝐴⟩ and |𝜆2⟩ is found. |𝐴⟩ has 

been elegantly expressed in the basic vectors |𝜆1⟩ and |𝜆2⟩.  

With the Gram-Schmidt Procedure the same result is obtained. Then, 

 |𝐴⟩ = |𝜆1⟩ − ⟨𝜆2|𝜆1⟩|𝜆2⟩.         (L.3.2.8) 

To find ⟨𝐴|𝐴⟩ = 1 , I must divide (L.3.2.8) by √1 − | ⟨𝜆2|𝜆1⟩|2 . 

 

We can expand into 𝑘(≥ 3) eigenvectors with the same eigenvalue and consequently 𝑁 − 𝑘 

eigenvectors with different eigenvalues. In words: For a vector space of dimension 𝑁 we 

have a 𝑁x𝑁 Hermitian operator. Suppose we have 𝑁 − 𝑘 orthonormal eigenvectors with 

different eigenvalues and 𝑘 eigenvectors with one and the same eigenvalue. Then we can 

find 𝑘 orthonormal eigenvectors by writing these vectors as linear combinations of the set of 

𝑘 eigenvectors which span the subspace of eigenvectors of the Hermitian operator with the 

same eigenvalue. 

Question: An important question, at least to me, is: To what purpose do we need to create a 

complete set of orthonormal eigenvectors? After completion of the set of eigenvectors the 

eigenvalues are still the same. Well, to represent a general ket vector you need the complete 

set. Think about three dimensional ket space. Using two basic vector means a two-

dimensional ket instead of the general three-dimensional general ket. 
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Eigenvalues are important according to Principle 2(Susskind page 70): “The possible results of 

a measurement are the eigenvalues of the operator that represents the observable.” On page 

74 Susskind writes:” ……Secondly, the eigenvectors that represent unambiguously 

distinguishable results must have different eigenvalues and must be orthogonal.” So, the 

above question will not go away. 

Dirac describes observables in paragraph 10. There he mentioned you need a complete set of 

orthonormal eigenstates(vectors). That does not answer my question. Having completed the 

orthonormal set, no new eigenvalue is found. 

 

Note: Dirac, on page 32, proofs the theorem “Two eigenvectors of a real dynamical variable 

belonging to different eigenvalues are orthogonal”. On page 30 one can read the following 

statement: “The theory of eigenvalues and eigenvectors of a linear operator 𝛼 which is not 

real is not of much use for quantum mechanics”. On page 32 Dirac presents the proof that an 

arbitrary ket can be expressed as the sum of eigen kets of a real linear operator 𝑳 (notation 

Susskind) which satisfies an algebraic equation: 𝜙(𝑳) ≡ ∑ 𝑎𝒌
𝒏
𝑘=0 𝑳𝑛−𝑘 = 0. 

Principle 2: The possible results of a measurement are the eigenvalues of the operator that 

represents the observable, page 70. Susskind writes that he will flesh these Principle out, 

since this statement is hardly self-explanatory. I do not know what fleshing out  really 

means. 

On page 73, Principle 4 is explored. There ⟨𝐴|𝜆𝑖⟩ = ⟨𝜆𝑖|𝐴⟩
∗ has been used.  

𝑃(𝜆𝑖) is the probability of measuring 𝜆𝑖. Any measurement creates a 𝜆𝑖. 

Hence, 

 𝑃 = ∑ 𝑃(𝜆𝑖) = 1𝑖 . 

Back to page 34: 

 |𝐴⟩ = ∑ |𝜆𝑖⟩⟨𝜆𝑖|𝐴⟩𝜆𝑖
. 

Then 

  ⟨𝐴| = ∑ ⟨𝜆𝑖|𝐴⟩⟨𝜆𝑖|𝜆𝑖
 . 

With ⟨𝜆𝑖|𝜆𝑗⟩ = 𝛿𝑖𝑗 and ⟨𝜆𝑖|𝜆𝑗⟩ = ⟨𝜆𝑖|𝜆𝑗⟩
∗
 

 ⟨𝐴|𝐴⟩ = ∑ |⟨𝐴|𝜆𝑖⟩|
2 = 𝑃 = 1𝜆𝑖

. 

3.3 An Example Spin Operators 
The goal is to write down the spin operators as 2 × 2 matrices. 

Susskind paid attention to the subtle relation between operators and observables. 

3.4 Constructing Spin Operators 
The first goal is to construct operators to represent the components of spin: 

 𝜎𝑥, 𝜎𝑦, and 𝜎𝑧 . 

Then, based on these spin operators a spin component in any direction is composed. 

On page 76,  Susskind applies the first three Principles as presented on pages 69 an 70, and I 

suppose these Principles to be confirmed by experiments. So, the result of an experiment is 

always one of the eigenvalues of the corresponding operator (Susskind page 71). 

Dirac, in paragraph 10, used the expression: “It is reasonable……….”.  No proof. 



19 
 

Exercise 3.2: About a spin operator 
Prove that Eq. 3.16: 

 (
(𝜎𝑧)11 (𝜎𝑧)12
(𝜎𝑧)21 (𝜎𝑧)22

) = (
1 0
0 −1

), 

is the unique solution to Eqs. 3.14 and 3.15. 
With Eq. 3.14 we find two equations: 
 (𝜎𝑧)11 ∙ 1 + (𝜎𝑧)12 ∙ 0 = 1, 
and 
 (𝜎𝑧)21 ∙ 1 + (𝜎𝑧)22 ∙ 0 = 0, 
 giving the unique solutions 
(𝜎𝑧)11 = 1 and (𝜎𝑧)21 = 0.  
Eq. 3.15 leads to two equations: 
 (𝜎𝑧)11 ∙ 0 + (𝜎𝑧)12 ∙ 1 = 0, 
and  
 (𝜎𝑧)21 ∙ 0 + (𝜎𝑧)22 ∙ 1 = −1, 
giving the unique solutions 
 (𝜎𝑧)12 = 0 and (𝜎𝑧)22 = −1. 
 

 

With the information derived in the foregoing sections, including the Principles, Susskind 

derived the expressions for 𝜎𝑥, and 𝜎𝑦 . 

3.5 A Common Misconception 
Susskind dealt with the correspondence between operators and measurement. An example 

is given on page

3.6   3-Vector Operators Revisited 
The two notions of vectors are summarized: 

- the vector in three-dimensional space, 

- the state vector. 

Operators have a lot in common with 3-vectors. Susskind, page 83, : “…, it does no harm to 

think of them in that way, …”.  

Then, the spin component of 𝜎  along the axis 𝑛⃗  is measured. The 3-vector character of 𝜎  is 

demonstrated. This leads to the general matrix representation of 𝜎  , Eq.(3.23). 

3.7 Reaping the Results  
About real calculations
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Exercise 3.3: The eigenvectors and eigenvalues of 𝜎n 

Calculate the eigenvectors and eigenvalues of 𝜎𝑛. 

 𝜎𝑛 = (
𝑐𝑜𝑠𝜃 𝑠𝑖𝑛𝜃
𝑠𝑖𝑛𝜃 −𝑐𝑜𝑠𝜃

). 

Hint: assume the eigenvector 𝜆1 has the form of 

  (
𝑐𝑜𝑠𝛼
𝑠𝑖𝑛𝛼

),  

where 𝛼 is an unknown parameter. Plug this vector into the eigenvalue equation and solve for 𝛼 in terms of 
𝜃. Why did we use a single parameter 𝛼? Notice that our suggested column vector must have unit length.  
A single parameter: there is one parameter in the matrix, 𝜃. The column vector has unit length. 
Consequently, 𝑐𝑜𝑠2𝛼 + 𝑠𝑖𝑛2𝛼 = 1. 
I will use a more general approach. 

The eigenvalues are found by the determinant (Chisholm and Morris)   |
𝑐𝑜𝑠𝜃 − 𝜆 𝑠𝑖𝑛𝜃
𝑠𝑖𝑛𝜃 −𝑐𝑜𝑠 − 𝜆

| = 0, for 

nontrivial solutions.  
Then,  
 (𝑐𝑜𝑠𝜃 − 𝜆) ∙ (−𝑐𝑜𝑠𝜃 − 𝜆) − 𝑠𝑖𝑛𝜃 ∙  𝑠𝑖𝑛𝜃 = −cos2 𝜃 + 𝜆2 − sin2 𝜃 =0 . 
Hence, the eigenvalues are:    𝜆 = ±1.  
With these eigenvalues we can find the ratio of the components of the eigenvectors. First find the 
eigenvector |𝜆1⟩ and  with eigenvalue 𝜆 = 1. We chose  the components of the eigenvector to be 𝛽1 and 𝛽2. 
So, 

  (
𝑐𝑜𝑠𝜃 𝑠𝑖𝑛𝜃
𝑠𝑖𝑛𝜃 −𝑐𝑜𝑠𝜃

) (
𝛽1
𝛽2
) = (

𝛽1
𝛽2
): 

  (𝑐𝑜𝑠𝜃 − 1)𝛽1 + 𝛽2𝑠𝑖𝑛𝜃 = 0 and                       
  𝛽1𝑠𝑖𝑛𝜃 − (𝑐𝑜𝑠𝜃 + 1)𝛽2 = 0.  

Hence 
𝛽1

𝛽2
=

𝑠𝑖𝑛𝜃

1−𝑐𝑜𝑠𝜃
=
𝑐𝑜𝑠

𝜃

2

𝑠𝑖𝑛
𝜃

2

 and 
𝛽1

𝛽2
=
1+𝑐𝑜𝑠𝜃

𝑠𝑖𝑛𝜃
=
𝑐𝑜𝑠

𝜃

2

𝑠𝑖𝑛
𝜃

2

.  

With normalisation of the eigenvector 
 ⟨𝜆1|𝜆1⟩ = 1 = |𝛽1|

2 + |𝛽2|
2, 

we find 𝛽1 = 𝑐𝑜𝑠
𝜃

2
 and 𝛽2 = 𝑠𝑖𝑛

𝜃

2
. 

Now the same procedure for the eigenvector |𝜆2⟩ with eigenvalue 𝜆 = −1. We chose for the components of 
the eigenvector: 𝛾1 and 𝛾2. 
Similarly, we obtain 
(𝑐𝑜𝑠𝜃 + 1)𝛾1 + 𝛾2 = 0 and 
𝛾1𝑠𝑖𝑛𝜃 + (1 − 𝑐𝑜𝑠𝜃)𝛾2 = 0.  

Hence 
𝛾1

𝛾2
=

−𝑠𝑖𝑛𝜃

1+𝑐𝑜𝑠𝜃
= −

𝑠𝑖𝑛
𝜃

2

𝑐𝑜𝑠
𝜃

2

 and 
𝛾1

𝛾2
=
𝑐𝑜𝑠𝜃−1

𝑠𝑖𝑛𝜃
= −

𝑠𝑖𝑛
𝜃

2

𝑐𝑜𝑠
𝜃

2

.  

With normalisation of the eigenvector, the components are: 𝛾1 = −𝑠𝑖𝑛
𝜃

2
 and 𝛾2 = 𝑐𝑜𝑠

𝜃

2
.  

Check: ⟨𝜆1|𝜆2⟩ = 0 ⟹ |𝜆2⟩ and |𝜆1⟩ are orthogonal. 
 

 

Based on the above results, an experimental prediction is made. It is about the probability of 

observing 𝜎𝑛 = +1, page 87. Eqs. 3.24 and 3.25.  

Remark:  

On page 87 Susskind mentioned Principle 4 formulated on page 70, Eq. 3.11. The probability  

𝑃 is already presented in Eq. 2.2. 

Susskind also introduced Eq. 3.26 : ⟨𝑳⟩ = ∑ 𝜆𝑖𝑖 𝑃(𝜆𝑖), the expectation value. 

As we know, we can express a state vector |𝛹⟩ in the eigenvectors |𝜆𝑖⟩ as basis vectors and 

use 𝑎𝑖 as probability amplitudes: 

|𝛹⟩ = ∑ 𝑎𝑖𝑖 |𝜆𝑖⟩ .  

Then ⟨𝑳⟩ = ⟨𝛹|𝑳|𝛹⟩ = (∑ ⟨𝜆𝑖𝑖 |𝑎𝑖
∗)𝑳(∑ 𝑎𝑖|𝜆𝑖⟩)𝑖 .  

With the Kronecker Delta 𝛿𝑖𝑗, and 𝐿|𝜆𝑖⟩ = 𝜆𝑖|𝜆𝑖⟩, 
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 ⟨𝑳⟩ = ∑ 𝑎𝑖
∗

𝑖 𝑎𝑖𝜆𝑖,  

where 𝑎𝑖
∗𝑎𝑖 is the probability 𝑃(𝜆𝑖) to find a particle in state |𝜆𝑖⟩. So, 

 ⟨𝑳⟩ = ∑ 𝜆𝑖𝑃(𝜆𝑖)𝑖 .  

On page 87 Susskind writes: “What is the probability of observing 𝜎𝑛 = +1? “ 

I consider this to be confusing. 𝜎𝑛 is an operator represented by a matrix; +1 is an 

eigenvalue of this matrix operator. So, equating the operator to the eigenvalue? On the 

other hand, considering observables and operators. I do understand the formulation. 

 

Exercise 3.4: The eigenvectors and eigenvalues of 𝜎n for spherical coordinates 
Let 𝑛𝑧 = 𝑐𝑜𝑠𝜃, 𝑛𝑥 = 𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜑, and 𝑛𝑦 = 𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝜑. Angles 𝜃 and 𝜑 are defined according to the usual 

conventions of spherical coordinates (Fig. 3.2 Susskind). Compute the eigenvalues and eigenvectors of the 
matrix of Eq. 3.23.  
Eq. 3.23: 

 𝜎𝑛 = (
𝑛𝑧 𝑛𝑥 − 𝑖𝑛𝑦

𝑛𝑥 + 𝑖𝑛𝑦 −𝑛𝑧
). 

Then, with spherical coordinates 

the determinant for the eigenvalues is 

 |
𝑐𝑜𝑠𝜃 − 𝜆 𝑠𝑖𝑛𝜃(𝑐𝑜𝑠𝜑 − 𝑖𝑠𝑖𝑛𝜑)

𝑠𝑖𝑛𝜃(𝑐𝑜𝑠𝜑 + 𝑖𝑠𝑖𝑛𝜑) −𝑐𝑜𝑠𝜃 − 𝜆
| = 0. 

The equation for the eigenvalues is: 
  (𝑐𝑜𝑠𝜃 − 𝜆) ∙ (−𝑐𝑜𝑠 − 𝜆) − 𝑠𝑖𝑛𝜃 ∙  𝑠𝑖𝑛𝜃 ∙ (𝑐𝑜𝑠𝜑 + 𝑖𝑠𝑖𝑛𝜑) ∙ (𝑐𝑜𝑠𝜑 − 𝑖𝑠𝑖𝑛𝜑) = 
 = −cos2 𝜃 + 𝜆2 − sin2 𝜃(cos2𝜑 + sin2 𝜑) = 0 . 
Again we find 𝜆 = ±1.  
For the eigenvector |𝜆1⟩ and eigenvalue 𝜆 = 1, the components of the eigenvector are 𝛽1 and 𝛽2.  
So, 

 (
𝑐𝑜𝑠𝜃 𝑠𝑖𝑛𝜃(𝑐𝑜𝑠𝜑 − 𝑖𝑠𝑖𝑛𝜑)

𝑠𝑖𝑛𝜃(𝑐𝑜𝑠𝜑 + 𝑖𝑠𝑖𝑛𝜑) −𝑐𝑜𝑠𝜃
) (
𝛽1
𝛽2
) = (

𝛽1
𝛽2
) 

Similarly, to Exercise 3.3, we have 

 
𝛽1

𝛽2
= (𝑐𝑜𝑠𝜑 − 𝑖𝑠𝑖𝑛𝜑)

𝑠𝑖𝑛𝜃

1−𝑐𝑜𝑠𝜃
= 𝑒−𝑖𝜑

𝑐𝑜𝑠
𝜃

2

𝑠𝑖𝑛
𝜃

2

 , and    
𝛽1

𝛽2
= (𝑐𝑜𝑠𝜑 − 𝑖𝑠𝑖𝑛𝜑)

1+𝑐𝑜𝑠𝜃

𝑠𝑖𝑛𝜃
= 𝑒−𝑖𝜑

𝑐𝑜𝑠
𝜃

2

𝑠𝑖𝑛
𝜃

2

.  

The components of the eigenvector |𝜆1⟩ are, using normalization, 

𝛽1 = 𝑐𝑜𝑠
𝜃

2
 and 𝛽2 = 𝑠𝑖𝑛

𝜃

2
𝑒𝑖𝜑  

Now, completely similar, for the eigenvector |𝜆2⟩ and the eigenvalue 𝜆 = −1, the components (𝛾1, 𝛾2) of 
this eigenvector are, with normalization,   

 𝛾1 = −𝑒
−𝑖𝜑𝑠𝑖𝑛

𝜃

2
 and 𝛾2 = 𝑐𝑜𝑠

𝜃

2
. 

Check: |𝜆2⟩ and |𝜆1⟩ are orthogonal.  

Remark: 𝑒−𝑖𝜑 can be considered as a relative phase factor? Meaning?  

 

Remark: Susskind alternately uses 𝜎, 𝜎  , 𝑛̂ and 𝑛. A little bit confusing. 
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Exercise 3.5: The independence of the coordinate system and probabilities 
Work out a more elaborate example involving the directions 𝑛̂ and 𝑚̂. In this setup the measuring 
equipment for the spin not only ends up in an arbitrary direction; it also starts out in a different arbitrary 
direction. Suppose the spin is prepared so that 𝜎𝑚 = +1. 
Remark:  
This is shorthand for the operator with eigenvalue +1.  
I also assume that Susskind meant with the preparation 𝜎𝑚 = +1, the probability to find the spin in the “up 
position” is equal to 1. So, repeating measuring the spin in the  𝑚̂ direction produces an eigen value of +1.  
The equipment is then rotated to the 𝑛̂ direction and (the eigenvalue of) 𝜎𝑛 is measured. What is the 
probability that the result is +1? Note that 𝜎𝑚 = 𝜎 ⃗⃗  ⃗  ∙ 𝑚̂ is similar to  the convention we used for 𝜎𝑛 
(Eq.3.22). This a lot of work indeed. However, we don’t need 𝜎𝑚 = 𝜎 ⃗⃗  ⃗ . 𝑚̂ . 
Since the  physics does not depend on a coordinate system, we align for example the z-axis with  𝑚̂ direction 
. Then we can use the same procedure as we did in Exercise 3.4. The probability   𝑃(+1) = |⟨𝑢|𝛽1⟩|

2. With 

𝛽1 as found in Exercise 3.4 and ⟨𝑢| = (1,0):    𝑃(+1) = 𝑐𝑜𝑠2
𝜃

2
. The angle 𝜃 given between 𝑚̂ and 𝑛̂. 

 

Exercises 3.4 and 3.5 lead to the same eigenvalues and eigenvectors. This must be, since 

physics is invariant for a coordinate transformation. 

3.8 The Spin-Polarization Principle  
Any state of a single spin is an eigenvector of some component of the spin. 

Proof:  
Any spin state can be represented by: |𝐴⟩ = 𝛼𝑢|𝑢⟩ + 𝛼𝑑|𝑑⟩.   

There exists some direction 𝑛̂, such that according to the principle 

   𝜎 . 𝑛̂|𝐴⟩ = |𝐴⟩.          (L3.8) 

With Eq. 3.23 and |𝐴⟩ in column vector representation, (L3.8) gives  

(
𝑛𝑧 (𝑛𝑥 − 𝑖𝑛𝑦)

(𝑛𝑥 + 𝑖𝑛𝑦) −𝑛𝑧
) (
𝛼𝑢
𝛼𝑑
) = (

𝛼𝑢
𝛼𝑑
).  

Solving for 𝛼𝑢 and 𝛼𝑑  we obtain 

 𝛼𝑢(𝑛𝑥
2 + 𝑛𝑦

2 + 𝑛𝑧
2 − 1) = 0  

and 

𝛼𝑑(𝑛𝑥
2 + 𝑛𝑦

2 + 𝑛𝑧
2 − 1) = 0.   

Excluding trivial solutions, 𝛼𝑢 and  𝛼𝑑  to be zero, we have (𝑛𝑥
2 + 𝑛𝑦

2 + 𝑛𝑧
2 − 1) = 0  

and that is to be expected. keeping in mind 𝛼𝑢
∗𝛼𝑢 + 𝛼𝑑

∗𝛼𝑑 = 1.  

Consequently, |𝐴⟩ is an eigenvector of 𝜎 . 𝑛̂|𝐴⟩. 

Since |𝐴⟩ is an eigenvector of the operator  𝜎 . 𝑛̂  the expectation value of this operator is, with (L3.8) : 

 〈𝜎 . 𝑛̂〉 = ⟨𝐴|𝜎 . 𝑛̂|𝐴⟩ = ⟨𝐴|𝐴⟩ = 1,  

where the normalization of |𝐴⟩, 𝛼𝑢
∗𝛼𝑢 + 𝛼𝑑

∗𝛼𝑑 = 1 is confirmed. 

End of Proof. 

 

Question: I don’t understand(page 91): ”On the other hand, the expectation value of the 

perpendicular components of 𝜎 (or 𝜎  ) are zero in the state |𝐴⟩”. Which are the 

perpendicular components of 𝜎 (or 𝜎 )? 𝜎𝑥 , 𝜎𝑦 and 𝜎𝑧?  

Well, ⟨𝐴|𝜎𝑧|𝐴⟩ = 𝛼𝑑
∗𝛼𝑢 + 𝛼𝑢

∗𝛼𝑑.  

So? I think the key is ⟨𝜎𝑛⟩ = cos 𝜃. The result of Exercises 3.4 and 3.5. Then perpendicular 

means 𝜃 = 𝜋 2⁄ . For 𝜃 = 0, we have the spin aligned along the 𝑧-axis and we find ⟨𝜎𝑥⟩ = 0 

and ⟨𝜎𝑦⟩ = 0. 

Susskind mentioned that the squares of the expectation values  of all three components of 

the spin operator 𝜎 or 𝜎  sum up to 1: 
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With the Pauli Matrices(Eq. 3.20), the column vector representation for |𝐴⟩ and the 

definition of the expectation value you will find after some algebra:                                          

(⟨𝐴|𝜎𝑥|𝐴⟩)
2 + (⟨𝐴|𝜎𝑦|𝐴⟩)

2 + (⟨𝐴|𝜎𝑧|𝐴⟩)
2 = (𝛼𝑢

∗𝛼𝑢 + 𝛼𝑑
∗𝛼𝑑)

2 = 1. (Eq. 3.27). 

Note: Dirac dealt with operators in chapter II. What intrigues me is his remark on page 28: 

“Thus the conjugate complex of the product of two linear operators equals the product of the 

conjugate complexes of the factors in reverse order. As simple examples of this result, it 

should be noted that, 𝜉 and η are real, in general 𝜉𝜂 is not real”. Yet I could not find an 

example. 

Lecture 4. Time and Change. 

 
In the preceding lectures the state-vectors have been analysed at a time, now it is time for 

“time and change”. The time development operator, determinism in quantum mechanics 

and the Hamiltonian are introduced. 

4.1 A Classical Reminder 
In this introductory section Susskind made the important statement:”… information is never 

lost.” The minus first Law. 

4.2 Unitarity 
A closed system is considered  at time 𝑡 in the quantum state Ψ(𝑡). 

Remark: 𝑼 as presented in Eq. 4.1 is the time-development operator for the system. I 

presume for every vector space or Landscape(Susskind) of vector spaces. The fact 𝑼ϯ(𝑡)𝑼(𝑡) 

behaves like the unit operator 𝑰 is related to the normalization of  |𝛹(𝑡)⟩ stays  normalized. 

On the  pages 94 and 97 Susskind mentions Conservation of Distinction. I suppose this law is 

proved by measurement of observables, represented by the operator working on the state 

vector. 

4.3 Determinism in Quantum Mechanics. 
Susskind’s Caveat: Classical determinism allows us to predict the results of an experiment. 

The quantum evolution of states allows us to compute the probabilities of the outcomes of 

later experiments.  

4.4 A Closer Look at 𝑈(𝑡) 
Susskind starts with the requirements on 𝑼(𝑡). 

- A linear operator, 

- Conservation of distinction. 

Consequently, “time evolution is unitary”. 
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Intermezzo A Universal Unitary 2-D Matrix with Elements represented by Real Numbers. 
I assume the matrix elements of the 2-D unitary matrix 𝑈 to be real numbers. 

 𝑈 = (
𝑎 𝑏
𝑐 𝑑

) . 

In addition I consider 𝑈 to be a Hermitian operator. Then, 

 𝑈 = (
𝑎 𝑏
𝑏 𝑑

) , and 𝑈† = (
𝑎 𝑏
𝑏 𝑑

). 

Next, let us find out about: 

 𝑈†𝑈 = 𝐼 ⟹ (
𝑎 𝑏
𝑏 𝑑

) (
𝑎 𝑏
𝑏 𝑑

) = (
1 0
0 1

). 

Resulting into three equations: 
- 𝑎2 + 𝑏2 = 1 , 
- 𝑎𝑏 + 𝑏𝑑 = 0 , 
and  
- 𝑏2 + 𝑑2 = 1 . 
After some algebra, with 𝑏 ≠ 0 , you obtain 
 𝑎 = −𝑑 , 
and  

 𝑏 = ±√1 − 𝑎2 . 
Hence: 
 𝑏 ≠ 0, 

 𝑈 = (
𝑎 ±√1 − 𝑎2

±√1 − 𝑎2 −𝑎
) , 

and 𝑏 = 0 

 𝑈 = (
1 0
0 −1

). 

 

 

  

Exercise 4.1: The unitary operator and the inner product of two vectors 
Prove that if 𝑼 is unitary, and if |𝐴⟩ and |𝐵⟩ are any two state-vectors, then the inner product of 𝑼|𝐴⟩ and 
𝑼|𝐵⟩ is the same as the inner product of |𝐴⟩ and |𝐵⟩. One could call this the conservation of overlaps. It 
expresses the fact that the logical relation between states is preserved with time. 

 𝑼 is unitary and 𝑼†𝑼 = 𝑰.  

The inner product 𝑼|𝐴⟩ and 𝑼|𝐵⟩ is ⟨𝐵|𝑼†𝑼|𝐴⟩ = ⟨𝐵|𝑰|𝐴⟩ = ⟨𝐵|𝐴⟩. 

 

 

4.5 The Hamiltonian 

Susskind builds up changes of time by combining many infinitesimal time intervals 𝜖. He 

mentioned that when 𝜖 is zero it should be obvious that in this case the time-evolution 

operator is merely the unit operator 𝑰. It is obvious when considering Eq. 4.1 with 𝑡 = 0: 

|𝛹⟩ = 𝑰|𝛹⟩. 

Remark: On page 101 Susskind writes: “…….also says that 𝑯 is a Hermitian operator. This has 

great significance. We can now say that 𝑯 is an observable, ……”.  

I suppose 𝑯 to represent an observable. 

On page 102 Susskind derives the generalized Schrödinger equation, Eq. 4.9: 
𝜕|𝛹⟩

𝜕𝑡
= −𝑖𝑯|𝛹⟩. 

Remark: Susskind stated the following: “We originally set things up so that the time variable 

is zero, but there was nothing special about 𝑡 = 0. Had we chosen another time and done the 



25 
 

same thing, we would have gotten the same result, namely, Eq. 4.9”.  

The equation 𝑼ϯ𝑼 = 𝑰: 

Are we allowed to assume 𝑼 to be Hermitian: 𝑼ϯ = 𝑼?  

 𝑼 to be Hermitian gives four-time independent solutions: (
±1 0
0 ±1

). 

To demonstrate this,  with 𝑼  a 2 × 2 matrix with elements 𝑢𝑖𝑗:  

𝑼 = (
𝑢11 𝑢12
𝑢21 𝑢22

).  

Then, 

 𝑼ϯ𝑼 = 𝑰 → (
𝑢11 𝑢21

∗

𝑢12
∗ 𝑢22

) (
𝑢11 𝑢12
𝑢21 𝑢22

) = (
1 0
0 1

) .  

Assuming all the matrix elements to be real, we finally obtain: 𝑼 = (
±1 0
0 ±1

).  

With Eq. (4.1) we can set 𝑼 = 𝑰  for 𝑡 = 0.  

 

Note: In the Feynman Lectures on Physics Vol. III chapter 8-4 “How states change with time” 

the above result for the generalized Schrödinger equation is derived a bit more elegantly. 

Feynman derived the Schrödinger equation at time 𝑡 and did not use 𝑡 = 0. Furthermore, 

instead of the state vector the equation is derived for the probability amplitude. In this way it 

is shown that the Schrödinger equation translates directly into the equation for the 

probability amplitude (and the wave function; see later). Feynman also wrote: “The 

Hamiltonian has one property that can be deduced right away, namely that 𝑯𝒊𝒋
∗ = 𝑯𝒋𝒊. This 

follows from the condition that the total probability that the system is in some state does not 

change”. 

Question: There is something I do not understand with respect to the to the principle of 

unitarity (page 100) Eq. 4.5: 

 𝑼ϯ(𝜖)𝑼(𝜖) = 𝑰.  

Plugging the expansions of 𝑼ϯ(𝜖) = 𝑰 + 𝑖𝜖𝑯ϯ and  𝑼(𝜖) = 𝑰 − 𝑖𝜖𝑯 into the unitarity 

condition(principle) we obtain 

(𝑰 + 𝑖𝜖𝑯ϯ  )( 𝑰 − 𝑖𝜖𝑯) = 𝑰 . Expanding to first order in 𝜖, Susskind finds: 𝑯ϯ = 𝑯, Eq.4.8. 

When I expand the unitarity condition the result is: 𝑖𝜖(𝑯ϯ −𝑯) = −𝜖2𝑯ϯ𝑯 or  

𝑯ϯ −𝑯 = 𝑖𝜖𝑯ϯ𝑯 .  

What does expand to first order in 𝜖 means in this respect, neglecting the right-hand side of 

𝑯ϯ −𝑯 = 𝑖𝜖𝑯ϯ𝑯? Well, I think this is correct. The term with 𝜖  can be neglected, a small 

quantity. So 𝑯ϯ −𝑯 = 0 . 

The confusion arises when 𝜖  is applied  for the deduction of the time-dependency of the 

state vector |𝛹⟩. Then 𝜖 → ∆𝑡 → 𝑑𝑡 in the limit and 𝜖 cannot be neglected. 

Well, the limit 𝜖 → 0 must be considered. 

Why did Susskind use the epsilontic approach? Is this in honour of Euler?2 

Remark: 

With the procedure at the bottom of page 101, Eq. 4.6 can be written as: 

 
𝑼(𝜖)−𝑼(0)

𝜖
= −𝑖𝑯 → 

𝑑𝑼

𝑑𝑡
= −𝑖𝑯 , where 𝑼(0) = 𝑰, 

 
2 See: A most elegant equation, Euler’s formula & the beauty of mathematics by David Stipp. 
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where use has been made of Eq.(4.1). 

And with Eq. 4.7 : 
𝑑𝑼ϯ

𝑑𝑡
= 𝑖𝑯ϯ. With 𝑯 Hermitian 

𝑑𝑼

𝑑𝑡
+
𝑑𝑼ϯ

𝑑𝑡
= 0. 

I am not so sure whether I am allowed  to manipulate the time evolution operator in this 

way. 

 

Remark: Susskind (page 101) writes below Eq.4.8: 𝑯ϯ = 𝑯 , “This last equation expresses the 

unitary condition”. I prefer: this last equation is derived from the unitary condition Eq. 4.5. 

Feynman concluded the Hermitian character of the Hamiltonian to be obtained from the 

total probability. 

4.6 What Ever Happened to ℏ? 
Here the important analysis of dimensions is used. 

Consequently, Eq.(4.9) is made consistent in terms of dimensions → Eq.(4.9). 

Note: Susskind paid some attention to: Why is Planck’s constant so small? He is in good 

company. Schrödinger discussed this too in a slightly different manner: Why are atoms so 

small? This scale issue is also discussed by Feynman in Part I Chapter 19-2.  

4.7 Expectation Values 
In this section the idea of the average or mean value is discussed. 

On page 105 Susskind mentioned for the first time Dirac and the bra-ket notation in relation 

to the notation ⟨𝑳⟩.  This is rather meagre since we used the bra and ket algebra for more 

than 80 pages already. 

The mathematical formulation of an average is given in Eq.(4.11). 

At the top of page 106 Susskind presented the basic hypothesis of statistical theory.  

In Eq.(4.14), a quick rule to compute averages is presented 

Page 108: the inner product of 𝜎𝑧|𝑟⟩ , Eq. 3.21, and ⟨𝑟| gives ⟨𝜎𝑧⟩ = 0: 

 ⟨𝜎𝑧⟩ = ⟨𝑟|𝜎𝑧|𝑟⟩ =
1

√2
(⟨𝑢| + ⟨𝑑|) 𝜎𝑧

1

√2
(|𝑢⟩ + |𝑑⟩) =

1

2
(⟨𝑢| + ⟨𝑑|)(|𝑢⟩ − |𝑑⟩) = 0 . 

4.8 Ignoring  the Phase-Factor 
In lecture 4.8 Susskind explained the ignoring of the phase-factor.  

This is illustrated by comparing two state vectors differing just a phase factor. 

This can be found in Dirac on page 46. 

See Exercise 3.4, page 21 of my notes: the relative phase factor. 

Let us have a closer look at the phase factor in this exercise. 

The two base vectors obtained in Exercise 3.4 are: 

 |𝛽⟩ = (
𝛽1
𝛽2
) = (

cos
𝜃

2

𝑒𝑖𝜑sin
𝜃

2

) ,  

 |𝛾⟩ = (
𝛾1
𝛾2
) = (

−𝑒−𝑖𝜑sin
𝜃

2

cos
𝜃

2

). 

A state |𝜓⟩ can be expanded into the base vectors 

 |𝜓⟩ = 𝛼1 |𝛽⟩ + 𝛼2|𝛾⟩. 
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Next we try to find out about the observable 𝑨 and determine its expectation value 

 ⟨𝜓|𝑨|𝜓⟩ = (𝛼1
∗⟨𝛽| + 𝛼2

∗⟨𝛾|)𝑨(𝛼1 |𝛽⟩ + 𝛼2|𝛾⟩). 

To determine the role of the phase-factor, I use the column representation of the base 

vectors and matrix representation of the observable. A Hermitian matrix which I assumed to 

be diagonalized. 

So, 𝑨 = (
𝑎 0
0 𝑏

). 

Then we have: 

 ⟨𝜓|𝑨|𝜓⟩ = (𝛼1
∗⟨𝛽| + 𝛼2

∗⟨𝛾|)𝑨(𝛼1 |𝛽⟩ + 𝛼2|𝛾⟩) = 

 = [𝛼1
∗ (cos

𝜃

2
 , 𝑒−𝑖𝜑sin

𝜃

2
) + 𝛼2

∗ (−𝑒𝑖𝜑sin
𝜃

2
, cos

𝜃

2
)] (
𝑎 0
0 𝑏

) [𝛼1 (
cos

𝜃

2

𝑒𝑖𝜑sin
𝜃

2

) +

𝛼2 (
−𝑒−𝑖𝜑sin

𝜃

2

cos
𝜃

2

)] = 

 = [𝛼1
∗ (cos

𝜃

2
 , 𝑒−𝑖𝜑sin

𝜃

2
) + 𝛼2

∗ (−𝑒𝑖𝜑sin
𝜃

2
 , cos

𝜃

2
)] [𝛼1(

𝑎 cos
𝜃

2

𝑏𝑒𝑖𝜑sin
𝜃

2

) +

𝛼2 (
−𝑎 𝑒−𝑖𝜑sin

𝜃

2

𝑏 cos
𝜃

2

)] = 𝛼1
∗𝛼1 𝑎 cos

2 𝜃

2
+ 𝛼1

∗𝛼1𝑏 sin
2 𝜃

2
−
𝛼2
∗𝛼1𝑎

2
𝑒𝑖𝜑 sin 𝜃 +

𝛼2
∗𝛼1𝑏

2
𝑒𝑖𝜑 sin 𝜃 + 

 −
𝛼1
∗𝛼2𝑎

2
𝑒−𝑖𝜑sin 𝜃 +

𝛼1
∗𝛼2𝑏

2
𝑒−𝑖𝜑 sin 𝜃 + 𝛼2

∗𝛼2𝑎 sin
2 𝜃

2
+ 𝛼2

∗𝛼2𝑏  cos
2 𝜃

2
 .  

We do have some more information. From the eigen values and eigenvectors of 𝐴 follows 

𝑎 = 𝑏 . 

Hence  

 ⟨𝜓|𝑨|𝜓⟩ = 𝑎(𝛼1
∗𝛼1 + 𝛼2

∗𝛼2). 

So, we can ignore the phase factor? 

Well, the above result comes as no surprise. 

With 𝑎 = 𝑏 , we have 

 𝑨 = (
𝑎 0
0 𝑏

) = (
𝑎 0
0 𝑎

) = 𝑎 (
1 0
0 1

) = 𝑎𝑰. 

Consequently, 

 ⟨𝜓|𝑨|𝜓⟩ =  𝑎⟨𝜓|𝑰|𝜓⟩ = 𝑎⟨𝜓|𝜓⟩ = 𝑎(𝛼1
∗𝛼1 + 𝛼2

∗𝛼2) = 𝑎. 

So what about 

 𝑨 = (
𝑎 𝑐
𝑐∗ 𝑏

) ? 

 ⟨𝜓|𝑨|𝜓⟩ = (𝛼1
∗⟨𝛽| + 𝛼2

∗⟨𝛾|)𝑨(𝛼1 |𝛽⟩ + 𝛼2|𝛾⟩) = 

 = [𝛼1
∗ (cos

𝜃

2
 , 𝑒−𝑖𝜑sin

𝜃

2
) + 𝛼2

∗ (−𝑒𝑖𝜑sin
𝜃

2
 , cos

𝜃

2
)] (

𝑎 𝑐
𝑐∗ 𝑏

) [𝛼1(
cos

𝜃

2

𝑒𝑖𝜑sin
𝜃

2

) +

𝛼2 (
−𝑒−𝑖𝜑sin

𝜃

2

cos
𝜃

2

)] = 
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 = [𝛼1
∗ (cos

𝜃

2
 , 𝑒−𝑖𝜑sin

𝜃

2
) + 𝛼2

∗ (−𝑒𝑖𝜑sin
𝜃

2
 , cos

𝜃

2
)] [𝛼1(

𝑎 cos
𝜃

2
+ 𝑐 𝑒𝑖𝜑sin

𝜃

2

𝑐∗cos
𝜃

2
+ 𝑏𝑒𝑖𝜑sin

𝜃

2

) +

𝛼2 (
−𝑎 𝑒−𝑖𝜑sin

𝜃

2
+ 𝑐 cos

𝜃

2

−𝑐∗ 𝑒−𝑖𝜑sin
𝜃

2
+  𝑏 cos

𝜃

2

)] = 𝛼1
∗𝛼1 𝑎 cos

2 𝜃

2
+
𝛼1
∗𝛼1𝑐

2
𝑒𝑖𝜑 sin 𝜃 +

𝛼1
∗𝛼1𝑐

∗

2
𝑒−𝑖𝜑 sin 𝜃 + 

 +𝛼1
∗𝛼1𝑏 sin

2 𝜃

2
− 
𝛼2
∗𝛼1𝑎

2
𝑒𝑖𝜑 sin 𝜃 −𝛼2

∗𝛼1𝑐 sin
2 𝜃

2
+ 𝛼2

∗𝛼1𝑐
∗ cos2

𝜃

2
+
𝛼2
∗𝛼1𝑏

2
𝑒𝑖𝜑 sin 𝜃 + 

− 
𝛼1
∗𝛼2𝑎

2
𝑒−𝑖𝜑 sin 𝜃 + 𝛼1

∗𝛼2𝑐 cos
2 𝜃

2
− 𝛼1

∗𝛼2𝑐
∗𝑒−2𝑖𝜑 sin2

𝜃

2
+
𝛼1
∗𝛼2𝑏

2
𝑒−𝑖𝜑 sin 𝜃 + 

+𝛼2
∗𝛼2𝑎 sin

2 𝜃

2
−
𝛼2
∗𝛼2𝑐

2
𝑒𝑖𝜑 sin 𝜃 −

𝛼2
∗𝛼2𝑐

∗

2
𝑒−𝑖𝜑 sin 𝜃 + 𝛼2

∗𝛼2𝑏 cos
2 𝜃

2
 . 

Now, it is not clear whether the phase shift has  a role to play. 

Well, may be using the matrix for 𝜎𝑛 in Eq.(3.23) we could find out about the phase factor. 

Furthermore, by averaging of 𝜑 over 2𝜋 , the phase factor disappears. Are we allowed to do 

the averaging? 

Let us analyse the matrix 𝜎𝑛 = (
cos 𝜃 sin 𝜃(cos𝜑 − 𝑖 sin 𝜑)

sin 𝜃(cos𝜑 + 𝑖 sin𝜑) − cos 𝜃
). 

So,  

 𝑎 = cos 𝜃, 

 𝑏 = −cos 𝜃, 

 𝑐 = sin 𝜃(cos𝜑 − 𝑖 sin 𝜑) = 𝑒−𝑖𝜑 sin 𝜃, 

and 

 𝑐∗ = sin 𝜃(cos𝜑 + 𝑖 sin 𝜑) = 𝑒𝑖𝜑 sin 𝜃. 

Then, we obtain: 

- 
𝛼1
∗𝛼1𝑐

2
𝑒𝑖𝜑 sin 𝜃 =

𝛼1
∗𝛼1𝑒

−𝑖𝜑 sin𝜃

2
𝑒𝑖𝜑 sin 𝜃 =

1

2
𝛼1
∗𝛼1 sin

2 𝜃, 

- 
𝛼1
∗𝛼1𝑐

∗

2
𝑒−𝑖𝜑 sin 𝜃 =

𝛼1
∗𝛼1𝑒

−𝑖𝜑 sin𝜃

2
𝑒𝑖𝜑 sin 𝜃 =

1

2
𝛼1
∗𝛼1 sin

2 𝜃, 

- −
𝛼2
∗𝛼1𝑎

2
𝑒𝑖𝜑 sin 𝜃 = −

𝛼2
∗𝛼1

2
𝑒𝑖𝜑 sin 𝜃 cos 𝜃, 

- 
𝛼2
∗𝛼1𝑏

2
𝑒𝑖𝜑 sin 𝜃 = −

𝛼2
∗𝛼1

2
𝑒𝑖𝜑 sin 𝜃 cos 𝜃 , 

- − 
𝛼1
∗𝛼2𝑎

2
𝑒−𝑖𝜑 sin 𝜃 = − 

𝛼1
∗𝛼2

2
𝑒−𝑖𝜑 sin 𝜃 cos 𝜃, 

- −𝛼1
∗𝛼2𝑐

∗𝑒−2𝑖𝜑 sin2
𝜃

2
= −𝛼1

∗𝛼2𝑒
𝑖𝜑 sin 𝜃 𝑒−2𝑖𝜑 sin2

𝜃

2
= −𝛼1

∗𝛼2𝑒
−𝑖𝜑 sin 𝜃 sin2

𝜃

2
 , 

- 
𝛼1
∗𝛼2𝑏

2
𝑒−𝑖𝜑 sin 𝜃 = −

𝛼1
∗𝛼2

2
𝑒−𝑖𝜑 sin 𝜃 cos 𝜃, 

- −
𝛼2
∗𝛼2𝑐

2
𝑒𝑖𝜑 sin 𝜃 = −

𝛼2
∗𝛼2

2
𝑒−𝑖𝜑 sin 𝜃 𝑒𝑖𝜑 sin 𝜃 = −

𝛼2
∗𝛼2

2
sin2 𝜃 , 

- −
𝛼2
∗𝛼2𝑐

∗

2
𝑒−𝑖𝜑 sin 𝜃 = −

𝛼2
∗𝛼2

2
𝑒𝑖𝜑 sin 𝜃 𝑒−𝑖𝜑 sin 𝜃 = − −

𝛼2
∗𝛼2

2
sin2 𝜃 . 

Hence, there remain some expression with a phase factor: 

- −
𝛼2
∗𝛼1

2
𝑒𝑖𝜑 sin 𝜃 cos 𝜃 −

𝛼2
∗𝛼1

2
𝑒𝑖𝜑 sin 𝜃 cos 𝜃 = −

𝛼2
∗𝛼1

2
𝑒𝑖𝜑 sin 2𝜃, 

- −𝛼1
∗𝛼2𝑒

−𝑖𝜑 sin 𝜃 sin2
𝜃

2
 , 

- − 
𝛼1
∗𝛼2

2
𝑒−𝑖𝜑 sin 𝜃 cos 𝜃 − 

𝛼1
∗𝛼2

2
𝑒−𝑖𝜑 sin 𝜃 cos 𝜃 = −

𝛼1
∗𝛼2

2
𝑒−𝑖𝜑 sin 2𝜃. 

To be expected? 
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4.9 Connections to Classical Mechanics 
 

Susskind: “The average, or expectation value, of an observable is the closest thing in 

quantum mechanics to a classical value.” 

Then, the time dependence of expectation values is discussed. 

The concept of commutator is presented based on Eq.(4.16). 

For any pair of operators, 𝑳 and 𝑴  page 111: 

 [𝑳,𝑴] = −[𝐌, 𝐋]. 

Well,  

 𝑴𝑳 − 𝑳𝑴 = [𝑴, 𝑳] → −𝑴𝑳 + 𝑳𝑴 = −[𝑴, 𝑳]. 

Exercise 4.2: 𝑴 and 𝑳 are both Hermitian, 𝑖[𝑴, 𝑳] is Hermitian. 
Prove that if 𝑴 and 𝑳 are both Hermitian, 𝑖[𝑴, 𝑳] is also Hermitian. Note that the 𝑖 is important. The 
commutator is, by itself, not Hermitian. 
Proof:  
Well, first not a real proof. A demonstration. We write the matrices 𝑴 and 𝑳 in components, 

𝑴 = (
𝑚11 𝑚12
𝑚12
∗ 𝑚22

) and 𝑳 = (
𝑙11 𝑙12
𝑙12
∗ 𝑙22

), 

and calculate 𝑖[𝑴, 𝑳] = 𝑖𝑴𝑳 − 𝑖𝑳𝑴. Having done this, calculate (𝑖[𝑴, 𝑳])ϯ. By comparing the components 

of 𝑖[𝑴, 𝑳] and (𝑖[𝑴, 𝑳])ϯ  ,  we see  𝑖[𝑴, 𝑳] to be Hermitian.  
A real proof is the following:  

With [𝑴, 𝑳] = 𝑴𝑳 − 𝑳𝑴 and (𝑴𝑳)ϯ = 𝑳ϯ𝑴ϯ , we have 

[𝑴, 𝑳]ϯ = (𝑴𝑳)ϯ − (𝑳𝑴)ϯ = 𝑳ϯ𝑴ϯ −𝑴ϯ𝑳ϯ = 𝑳𝑴 −𝑴𝑳.                                                              
In general, 𝑳𝑴 −𝑴𝑳 ≠ 𝑴𝑳 − 𝑳𝑴. 

Now (𝑖[𝑴, 𝑳])ϯ = (𝑖𝑴𝑳)ϯ − (𝑖𝑳𝑴)ϯ = −𝑖𝑳𝑴 + 𝑖𝑴𝑳 = 𝑖(𝑴𝑳 − 𝑳𝑴) = 𝑖[𝑴, 𝑳]. 
Hence  𝑖[𝑴, 𝑳] , is Hermitian. 
End of Proof. 

 

 

Then, Poisson brackets are introduced again. Susskind demonstrated the close relation 

between commutators and Poisson brackets. 

Remark: In the text of page 113 Susskind mentioned 𝐺 instead of 𝐻.  

Exercise 4.3: The identification between commutators and Poisson brackets 
Go back to the definition of Poisson brackets in Volume I(The Theoretical Minimum Series) and check that 
the identification in Eq. 4.21 is dimensionally consistent. Show that without the factor ℏ, it would not be. 
Proof: the Poisson bracket is defined in Lecture 9 of Volume I, Eq. 9 page 172: 

 {𝐹, 𝐺} = ∑ (
𝜕𝐹

𝜕𝑞𝑖
𝑖

𝜕𝐺

𝜕𝑝𝑖
−

𝜕𝐹

𝜕𝑝𝑖

𝜕𝐺

𝜕𝑞𝑖
), 

where 𝐹 and 𝐺 are any two functions of phase space. 
Given the dimension of ℏ on page 103, kg𝑚2/𝑠 , we learn that the dimension of ℏ corresponds with the 
dimension of (𝑞𝑖𝑝𝑖)

−1. Where 𝑞𝑖  and 𝑝𝑖  are the coordinates of phase space. 
 

 

4.10 Conservation of Energy 
Attention is paid to the meaning of conservation in quantum mechanics. 

A quantity 𝑸 is conserved when, Eq.(4.19), 

 
𝑑𝑸

𝑑𝑡
= 0 . 
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Remark: Susskind writes on page 115 that “….if [𝑯,𝑸] = 0, then [𝑸𝟐, 𝑯] = 0, or even more 

generally, [𝑸𝒏, 𝑯] = 0, for any 𝑛.”  

We know [𝑯,𝑸] = 0, so 𝑯𝑸− 𝑸𝑯 = 0.  

Multiply the 𝑯𝑸− 𝑸𝑯 = 0 to the left with 𝑸  and add to the left hand side and the right 

hand side of the equality sign 𝑯𝑸𝟐, we have 

 𝑸𝑯𝑸− 𝑸𝟐𝑯+𝑯𝑸𝟐 = 𝑯𝑸𝟐 or  

 𝑸𝑯𝑸−𝑯𝑸𝟐 − 𝑸𝟐𝑯+𝑯𝑸𝟐 = 0 

(𝑸𝑯 −𝑯𝑸)𝑸 − 𝑸𝟐𝑯+𝑯𝑸𝟐 = 0 → 𝑸𝟐𝑯−𝑯𝑸𝟐 = 0, 

so, [𝑸𝟐, 𝑯] = 0.  

The same procedure and the method of induction can be used to prove [𝑸𝒏, 𝑯] = 0.  

 

Proof by Induction 
Assume [𝑸𝒏, 𝑯] = 0 , to be true, 
 𝑯𝑸𝒏 − 𝑸𝒏𝑯 = 0 ⟹ 𝑸𝑯𝑸𝒏 −𝑸𝒏+𝟏𝑯+𝑯𝑸𝒏+𝟏 = 𝑯𝑸𝒏+𝟏⟹ 
 ⟹𝑸𝑯𝑸𝒏 −𝑯𝑸𝒏+𝟏 − 𝑸𝒏+𝟏𝑯+𝑯𝑸𝒏+𝟏 = 0 ⟹ (𝑸𝑯 −𝑯𝑸)𝑸𝒏 +𝑯𝑸𝒏+𝟏 − 𝑸𝒏+𝟏𝑯 = 0. 
Then, 

 𝑯𝑸𝒏+𝟏 −𝑸𝒏+𝟏𝑯 = 0. 
Hence, 

 [𝑸𝒏+𝟏, 𝑯] = 0. 
End of Proof 

 

The commutation of 𝑸 with the Hamiltonian reflects the expectation values of all functions of 

𝑸 to be conserved. 

4.11 Spin in a Magnetic Field 
This section is about the application of the Hamiltonian for a single spin. 

Susskind mentioned the time-dependence of an observable to be given by the commutator 

of the observable with the Hamiltonian, Eq.(4.19) shorthand for Eq.(4.18): 

 
𝑑𝑳

𝑑𝑡
= −

𝑖

ℏ
[𝑳,𝑯]. 

Of importance is to find out about the Hamiltonian to describe the spin in a magnetic field 𝐵⃗ . 

The Hamiltonian, analogous to a classical spin in a magnetic field, 

 𝐻 ∝ 𝜎 ∙ 𝐵⃗  = 𝜎𝑥𝐵𝑥 + 𝜎𝑦𝐵𝑦 + 𝜎𝑧𝐵𝑧 

On page 117, Susskind applies Eq.(4.18) or (4.19).  

With the expression for the Hamiltonian, Eq.(4.23) , Eqs.(4.25) are found. 

Note: the “dot” above, e.g., 𝜎𝑥 ⟹ 𝜎𝑥̇, is the fluxion notation of Newton.  

So, 

 𝜎𝑥̇ ≡
𝑑𝜎𝑥

𝑑𝑡
 . 
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Exercise 4.4 About the commutation relations of the Pauli matrices 
Verify the commutation relations of Eqs. 4.26. 
With the Pauli matrices summarized on page 347, I verify one of the commutation relations: 

[𝜎𝑥, 𝜎𝑦] = 2𝑖𝜎𝑧.  

[𝜎𝑥, 𝜎𝑦] = 𝜎𝑥𝜎𝑦 − 𝜎𝑦𝜎𝑥, and, using, 𝜎𝑧 = (
1 0
0 −1

), 2𝑖𝜎𝑧 = (
2𝑖 0
0 −2𝑖

). 

Furthermore 

 𝜎𝑥𝜎𝑦 = (
0 1
1 0

) (
0 −𝑖
𝑖 0

) = (
𝑖 0
0 −𝑖

) ,  

and 

 𝜎𝑦𝜎𝑥 = (
0 −𝑖
𝑖 0

) (
0 1
1 0

) = (
−𝑖 0
0 𝑖

). 

So, 

 𝜎𝑥𝜎𝑦 − 𝜎𝑦𝜎𝑥 = (
𝑖 0
0 −𝑖

) − (
−𝑖 0
0 𝑖

) = (
2𝑖 0
0 −2𝑖

),  

and consequently, 

 [𝜎𝑥, 𝜎𝑦] = 2𝑖𝜎𝑧. 

 

Remark: Eq. 4.17 reads: 
𝑑

𝑑𝑡
⟨𝑳⟩ =

𝑖

ħ
⟨[𝑳,𝑯]⟩ where 𝑳 has no explicit time dependency. In 

Mahan you can find in the homework of Chapter I, Introduction, 
𝑑

𝑑𝑡
⟨𝑳⟩ to be 0 in an 

eigenstate of 𝑯 with discrete eigenvalues. Well, with Eq. 4.28, Eq. 4.17 can be written as: 

 
𝑑

𝑑𝑡
⟨𝑳⟩ =

𝑖

ħ
⟨𝐸𝑗|(𝑯𝑳 − 𝑳𝑯)|𝐸𝑗⟩ =

𝑖

ħ
⟨𝐸𝑗|𝐸𝑗(𝑳 − 𝑳)𝐸𝑗|𝐸𝑗⟩ =

𝑖𝐸𝑗

ħ
⟨𝐸𝑗|(𝑳 − 𝑳|)𝐸𝑗⟩ = 0. 

Remember: eigenvalues of Hermitian operators are real; Susskind page 63. This is not all. 

When the eigenvectors form a complete set(page 66 and 67), any state vector can be 

expanded in the eigenvectors. Consequently,  
𝑑

𝑑𝑡
⟨𝑳⟩ = 0 for any state vector with 𝑳 not 

explicitly dependent on time.  

4.12 Solving the Schrödinger Equation 
The time-dependent Schrödinger equation Eq.(4.10), 

 ℏ
𝜕|Ψ⟩

𝜕𝑡
= −𝑖𝑯|Ψ⟩ , 

is the basis for this section. 

The time-independent Schrödinger equation or eigenvalue equation is : 

 𝐻|𝐸𝑗⟩ = 𝐸𝑗|𝐸𝑗⟩, Eq. (4.28). 
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Exercise 4.5: The energy eigen values and eigenvectors of the spin Hamiltonian 

Take any unit 3-vector 𝑛̂ = (𝑛𝑥 , 𝑛𝑦, 𝑛𝑧), and form the operator 𝑯 =
ħ𝜔

2
 𝜎  . 𝑛̂.  

Find the energy eigenvalues and eigenvectors by solving the time-independent Schrödinger equation.  
Recall that Eq. 3.23 gives 𝜎𝑛 = 𝜎  . 𝑛̂ , in matrix representation. A  2 × 2 matrix : 

  𝜎𝑛 = (
𝑛𝑧 𝑛𝑥 − 𝑖𝑛𝑦

𝑛𝑥 + 𝑖𝑛𝑦 −𝑛𝑧
). 

There are two approaches for this exercise.  
The first, 1), is use of the results of Exercise  3.4 and  
the second, 2),  to start with the time-independent Schrödinger equation. 
ad 1) The eigenvalues of 𝜎𝑛 , found in Exercise 3.4, are ±1. To obtain the energy eigenvalues of the operator 

𝑯  multiply ±1 with 
ħ𝜔

2
 , and both energy eigenvalues are obtained. The eigenvectors are the same as found 

in Exercise 3.4: 

 |𝐸1⟩ = (
𝑐𝑜𝑠

𝜃

2

𝑠𝑖𝑛
𝜃

2

) and |𝐸2⟩ = (
−𝑠𝑖𝑛

𝜃

2

𝑐𝑜𝑠
𝜃

2

).  

These column vectors can be rewritten in Cartesian coordinates with goniometric relations 𝑠𝑖𝑛
𝜃

2
=

√(1 − 𝑐𝑜𝑠𝜃)/2 ,  𝑐𝑜𝑠
𝜃

2
= √(1 + 𝑐𝑜𝑠𝜃)/2, and 𝑛𝑧 = 𝑐𝑜𝑠𝜃 (Lecture 3.7). 

ad 2)  𝜎  . 𝑛̂ ⟹ 𝜎𝑛 = (
𝑛𝑧 𝑛𝑥 − 𝑖𝑛𝑦

𝑛𝑥 + 𝑖𝑛𝑦 −𝑛𝑧
). 

With Eq. 4.28, the time-independent Schrödinger equation, we obtain with 𝜎𝑛 and 𝑯  
ħ𝜔

2
𝜎𝑛|𝐸𝑗⟩  = 𝐸𝑗|𝐸𝑗⟩ , 𝑗 = 1,2 .  

The eigenvalues of the matrix are found with the determinant:  

|

ħ𝜔

2
𝑛𝑧−𝐸𝑗

ħ𝜔

2
(𝑛𝑥 − 𝑖𝑛𝑦)

ħ𝜔

2
(𝑛𝑥 + 𝑖𝑛𝑦) −

ħ𝜔

2
𝑛𝑧 − 𝐸𝑗

| = 0,  

giving −[(
ħ𝜔

2
𝑛𝑧)

2

− 𝐸𝑗
2] − (

ħ𝜔

2
)
2

(𝑛𝑥
2 − 𝑛𝑦

2) = 0.   

With  𝑛𝑥
2 + 𝑛𝑦

2 + 𝑛𝑧
2 = 1,  

 𝐸𝑗 = ±
ħ𝜔

2
.  

Remember, this shows once more the Spin Polarization Principle. 
Now for the eigenvectors with column presentation 

 |𝐸𝑗⟩ = (
𝛼
𝛽) : 

ħ𝜔

2
𝜎𝑛 (

𝛼
𝛽) = ±

ħ𝜔

2
(
𝛼
𝛽) , we find two equations.  

These are for 𝐸1 = +
ħ𝜔

2
 : 

𝑛𝑧𝛼 + (𝑛𝑥 − 𝑖𝑛𝑦)𝛽 = 𝛼 and 

(𝑛𝑥 + 𝑖𝑛𝑦)𝛼 − 𝑛𝑧𝛽 = 𝛽. 

The preceding two equations give us with the ratio 𝛼 𝛽⁄  , the eigenvector going with 𝐸1: 

 𝛼 𝛽⁄ = −
𝑛𝑥−𝑖𝑛𝑦

𝑛𝑧−1
 , or  𝛼 𝛽⁄ =

𝑛𝑧+1

𝑛𝑥+𝑖𝑛𝑦
 . 

With normalization 
 𝛼∗𝛼 + 𝛽∗𝛽 = 1, 
and 
 𝑛𝑥
2 + 𝑛𝑦

2 + 𝑛𝑧
2 = 1, 

 𝛼 = −
1

√2

𝑛𝑥−𝑖𝑛𝑦

√1−𝑛𝑧
 , 

 𝛽 =
1

√2
√1 − 𝑛𝑧 . 

The eigenvector in column representation is |𝐸1⟩  =
1

√2

1

√1−𝑛𝑧
(
−𝑛𝑥 + 𝑖𝑛𝑦
1 − 𝑛𝑧

). 

With the eigenvalue 𝐸2 = −
ħ𝜔

2
 , the two equations for components of the column representation of the 

eigenvector |𝐸2⟩ are derived from 
ħ𝜔

2
𝜎𝑛 (

𝛼
𝛽) = −

ħ𝜔

2
(
𝛼
𝛽) : 

𝑛𝑧𝛼 + (𝑛𝑥 − 𝑖𝑛𝑦)𝛽 = −𝛼 and  

(𝑛𝑥 + 𝑖𝑛𝑦)𝛼 − 𝑛𝑧𝛽 = −𝛽. 
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These two equations give another ratio 𝛼 𝛽⁄  for the eigenvector going with 𝐸2:  

 𝛼 𝛽⁄ = −
𝑛𝑥−𝑖𝑛𝑦

𝑛𝑧+1
 , or 𝛼 𝛽⁄ = −

1−𝑛𝑧

𝑛𝑥+𝑖𝑛𝑦
 . 

With normalization  
 𝛼∗𝛼 + 𝛽∗𝛽 = 1, 
and  
 𝑛𝑥
2 + 𝑛𝑦

2 + 𝑛𝑧
2 = 1, 

 𝛼 = −
1

√2

𝑛𝑥−𝑖𝑛𝑦

√1+𝑛𝑧
 , 

 𝛽 =
1

√2
√1 + 𝑛𝑧 

The eigenvector in column representation is |𝐸2⟩ =
1

√2

1

√1+𝑛𝑧
(
−𝑛𝑥 + 𝑖𝑛𝑦
1 + 𝑛𝑧

). 

After inspection we find ⟨𝐸1|𝐸2⟩ = 0.  
Notice: the complex factor in front of the square root can be written as a phase factor using 

 𝑛𝑥
2 + 𝑛𝑦

2 + 𝑛𝑧
2 = 1. The phase factor can be written as 𝑒𝑖2𝜙, where 𝜙 is the angle between 𝑖𝑛𝑦 and 𝑛𝑥 in the 

two-dimensional complex sub-space. 

 

Remark:  

On page 121 Susskind writes: “…the eigenvectors form an orthonormal basis…”. Do they? 

The Fundamental Theorem in Lecture 3.15 says: “If …. are two unequal eigenvalues of a 

Hermitian operator, then the corresponding eigenvectors are orthogonal”. May  be Susskind 

uses orthonormal and orthogonal alternately. When you express the eigenvectors in polar 

coordinates and neglect the phase vector 𝑒−𝑖𝜑 it is a bit more straightforward to show that 

the eigenvectors are normalized and orthonormal(See exercise 3.4).  

On pages 121-124, Susskind derived the time dependent state-vector |Ψ(𝑡)⟩ , Eq.(4.33). 

4.13 Recipe for a Schrödinger Equation. 

 
In this section the results of Lecture 4.12 have been summarized: a recipe to obtain the 

solution of the Schrödinger equation.  

In Eq.4.33, the time-dependent solution of the Schrödinger equation is presented. 

In the following exercise the recipe is applied.  

The result is the possibility to predict the probabilities for each possible outcome of an 

experiment as a function of time. 

In the exercise, at time 𝑡, a measurement is 𝜎𝑦 is made where the initial state is |𝑢⟩. 

The final observable is 𝜎𝑥. 

Now, I like to draw tour attention to pages 12 and 13: Lecture 1.4 Experiments Are Never 

Gentle “…..make an intermediate measurement(observation), and turn it(the apparatus) 

back to its original direction. Will a subsequent measurement along the z-axis confirm the 

original measurement? The answer is no”. 
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Exercise 4.6: Application of the Schrödinger Ket Recipe for a single spin 

Carry out the Schrödinger Ket recipe for a single spin. The Hamiltonian is 𝑯 =
𝜔ħ

2
𝜎𝑧 and the final observable 

is 𝜎𝑥. The initial state is given as |𝑢⟩ (the state in which 𝜎𝑧 = +1). 
After time 𝑡, an experiment is done to measure 𝜎𝑦. What are the possible outcomes and what are the 

probabilities for those outcomes? 
Remark: before starting the recipe: I do not know what Susskind meant with final observable! May be it is 
somewhere hidden in the book. 
The recipe: Step by Step. 
1) Derive, look up, guess, borrow, or steal the Hamiltonian operator 𝑯. 

The Hamiltonian operator is given: 𝑯 =
𝜔ħ

2
𝜎𝑧. 

2) Prepare the initial state |𝛹(0)⟩. 
The initial state is given: |𝛹(0)⟩  = |𝑢⟩, the state in which 𝜎𝑧 = +1. 
3) Find the eigenvalues and eigenvectors of 𝑯 by solving the time-independent Schrödinger equation, 

𝑯|𝐸𝑗⟩  = 𝐸𝑗|𝐸𝑗⟩:  

 (

ħ𝜔

2
0

0 −
ħ𝜔

2

) |𝐸𝑗⟩  = 𝐸𝑗|𝐸𝑗⟩. 

The determinant for the eigenvalues is: |

ħ𝜔

2
− 𝐸𝑗 0

0 −
ħ𝜔

2
− 𝐸𝑗

| = 0 ,  

then, 𝐸1,2 = ±
ħ𝜔

2
.  

The eigen vectors: 

 (

ħ𝜔

2
0

0 −
ħ𝜔

2

)(
𝛼
𝛽) = ±

ħ𝜔

2
(
𝛼
𝛽). 

For 𝐸1 =
ħ𝜔

2
 : 

 𝛼 = 𝛼 , 
 −𝛽 = 𝛽, 
we have 𝛽 = 0, and with normalization 𝛼 = 1. 
Hence  

 |𝐸1⟩ = (
1
0
) . 

 For 𝐸2 = −
ħ𝜔

2
 : 

  𝛼 = −𝛼 , 
 −𝛽 = −𝛽, 
we have 𝛼 = 0, and with normalization 𝛽 = 1. 
Hence  

 |𝐸2⟩ = (
0
1
) . 

4) Use the initial state vector to be |𝑢⟩ , along with the eigenvectors |𝐸𝑗⟩ from step 3 to calculate the initial 

coefficients 𝛼𝑗(0): 

 𝛼𝑗(0) = ⟨𝐸𝑗|𝑢⟩. 

Then 𝛼1(0) = ⟨𝐸1|𝑢⟩  = (1    0) (
1
0
) = 1 , 

and 

 𝛼2(0) = ⟨𝐸2|𝑢⟩  = (0    1) (
1
0
) = 0. 

5) Rewrite |𝛹(0)⟩ in terms of the eigenvectors |𝐸𝑗⟩ and the initial coefficients 𝛼𝑗(0): 

 |𝛹(0)⟩  = ∑ 𝛼𝑗(0)|𝐸𝑗⟩𝑗 → |𝛹(0)⟩  = |𝐸1⟩. 

6) In the above equation for |𝛹(0)⟩ , replace each 𝛼𝑗(0) with 𝛼𝑗(𝑡) to capture time-dependence. As a result, 

|𝛹(0)⟩ becomes |𝛹(𝑡)⟩ : |𝛹(𝑡)⟩  = ∑ 𝛼𝑗(𝑡)|𝐸𝑗⟩𝑗 . 

7) Use Eq. 4.30:  𝛼𝑗(𝑡) = 𝛼𝑗(0)𝑒
−
𝑖

ħ
𝐸𝑗𝑡  

replace each 𝛼𝑗(𝑡) with 𝛼𝑗(0)𝑒
−
𝑖

ħ
𝐸𝑗𝑡 and the eigenvalue 𝐸1 =

ħ𝜔

2
:  
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|𝛹(𝑡)⟩  = ∑  𝛼𝑗(0)𝑒
−
𝑖

ħ
𝐸𝑗𝑡|𝑗 𝐸𝑗⟩  = 𝑒

−𝑖𝜔𝑡/2|𝐸1⟩.  

 Now, at time 𝑡, 𝑡1 say, the experiment is done to measure 𝜎𝑦. The operator for 𝜎𝑦 is the matrix (
0 −𝑖
𝑖 0

).  

So, 

 (
0 −𝑖
𝑖 0

) |𝛹(𝑡)⟩  = (
0 −𝑖
𝑖 0

) 𝑒−𝑖𝜔𝑡/2|𝐸1⟩ = (
0 −𝑖
𝑖 0

) 𝑒−
𝑖𝜔𝑡

2 (
1
0
) = 𝑒−

𝑖𝜔𝑡

2 (
0
𝑖
) = 𝑖𝑒−

𝑖𝜔𝑡

2 (
0
1
) = 

 = 𝑒−
𝑖(𝜔𝑡−𝜋)

2 (
0
1
) = |𝛹(𝑡)⟩ , for 𝑡 = 𝑡1, 

 or 

 |𝛹(𝑡1)⟩ =  𝑒
−
𝑖(𝜔𝑡1−𝜋)

2  |𝐸2⟩ . 
To predict the probabilities of the measurement 𝜎𝑦, we need the eigenvectors of the matrix 

 (
0 −𝑖
𝑖 0

). The results of this exercise are presented in the Appendix and explained in detail in Lecture 3.4. I 

present here the results. 
The eigenvalues are 𝜆𝑗 = ±1.  

The eigenvectors which comply with normalization are  

 |𝜆1⟩ = (

1

√2

𝑖

√2

) ⟹ |𝜆1⟩ =
1

√2
( |𝐸1⟩ + 𝑖 |𝐸2⟩), 

and       

 |𝜆2⟩ = (

1

√2

−𝑖

√2

) ⟹ |𝜆2⟩ =
1

√2
( |𝐸1⟩ − 𝑖 |𝐸2⟩) . 

 
Now, we need to calculate the two probabilities for both eigenvalues:  
𝑃𝜆1 = |⟨𝛹(𝑡1)|𝜆1⟩|

2  and 𝑃𝜆2 = |⟨𝛹(𝑡1)|𝜆2⟩|
2. 

Plug the results for 𝑡 = 𝑡1 into 𝑃𝜆1 = |⟨𝛹(𝑡1)|𝜆1⟩|
2, and you find after some algebra with complex numbers: 

 𝑃𝜆1 = |⟨𝛹(𝑡1)|𝜆1⟩|
2 =

1

2
 , 

consequently 

 𝑃𝜆2 = |⟨𝛹(𝑡1)|𝜆2⟩|
2 =

1

2
 . 

This is what we learned and should expect. 
I suppose the final observable 𝜎𝑥  to be the observable at 𝑡 = 𝑡2 with 𝑡2 > 𝑡1. After the observation 𝜎𝑦 the 

system is in the state |𝜆1⟩ or |𝜆2⟩ , which one we do not know. When we make the observation 𝜎𝑥  it is to be 
expected to find again equal probabilities. 

So, with 𝜎𝑥 = (
0 1
1 0

) we find for the eigenvalues 𝛾𝑗 = ±1. The eigenvectors are 

  |𝛾1⟩  = (

1

√2
1

√2

) ⟹ |𝛾1⟩ =
1

√2
( |𝐸1⟩ + |𝐸2⟩)  

and 

|𝛾2⟩  = (

1

√2
−1

√2

)⟹ |𝛾2⟩ =
1

√2
( |𝐸1⟩ −  |𝐸2⟩).  

What about the probabilities? 
 𝑃𝛾1 = |⟨𝜆1|𝛾1⟩|

2, under the condition |𝜆1⟩:  

 𝑃𝛾1 =
1

2
(1 − 𝑖)(1 + 𝑖) =

1

2
 . The probability to be in |𝜆1⟩ is 

1

2
. So the total probability  to be in |𝛾1⟩ starting in  

|𝜆1⟩  is 𝑃𝛾1 ∙
1

2
=
1

4
 . 

Then we have: 𝑃𝛾1 = |⟨𝜆2|𝛾1⟩|
2, under the condition |𝜆2⟩. So the total probability  to be in |𝛾1⟩ starting in  

|𝜆2⟩  is 𝑃𝛾1 ∙
1

2
=
1

4
 . 

Now the probability 𝑃𝛾2 = |⟨𝜆1|𝛾2⟩|
2 starting in |𝜆1⟩ is 𝑃𝛾2 ∙

1

2
=
1

4
 . 

The last probability to calculate is 𝑃𝛾2 = |⟨𝜆2|𝛾2⟩|
2 starting in |𝜆2⟩ is 𝑃𝛾2 ∙

1

2
=
1

4
 . 

Obviously, the total probability is equal 1. 
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4.14 Collapse 
Lecture 4 concludes with the section about the collapse of the wave function of which the 

above exercise comprises an example. See also Dirac page 36. 

An important remark by Susskind: “Nevertheless, it is fair to say that between observations, 

the state of a system evolves in a perfectly definite way, according to the time-dependent 

Schrödinger equation.” 

At the top of page 127, Susskind describes the phenomenon of collapse. 

This leads to the conclusion for the need to describe the act of measurement(observation) 

by the laws of quantum mechanics. 

Lecture 5. Uncertainty and Time Dependence. 

 

5.1 Mathematical Interlude: Complete Sets of Commuting Variables 

5.1.1 States that Depend On More Than One Measurable 

A spin is an illustrative example of measurables, observables. 

Susskind presented two examples of systems consisted of more than one spin. There are 

multiple observables that are compatible, i.e., their values can be known simultaneously. 

Two examples are presented: 

- the three position coordinates of a particle, 

- a system composed of two physically independent spins.  

Susskind discussed the latter example on the pages 130-133. It is about two different 

operators, specified at the bottom of page 131 and on the following pages of this section. 

On page 133 Susskind writes: “If an operator annihilates every member of a basis, it must 

also annihilate every vector in the vector space”. Why? Since any vector can be constructed 

by the members of that basis. 

Important conclusion on the same page: “……, the condition for two observables to be 

simultaneously measurable is that they commute.” , illustrated by Eq. (5.1): 

 [𝑳,𝑴]|𝜆, 𝜇⟩ = 0 . 

The complete set of commuting observables is introduced. 

5.1.2 Wave functions 

In this Lecture , the concept of wave function is introduced. 

Susskind defined an orthonormal complete set of basis vectors, generally written as: 

 |𝑎, 𝑏, 𝑐, … . ⟩. I suppose, this general expression reflects the set: 

  |𝑎⟩, |𝑏⟩, |𝑐⟩, " …. and the eigenvalues are 𝑎, 𝑏, 𝑐, …. of the complete set of commuting 

observables 𝑨, 𝑩, 𝑪,… ". 

Note: this sentence summarizes almost all the theory presented up to page 134. In addition, 

about 𝑨, etc: observable or operator? It is subtle. 

The arbitrary state vector Ψ is expanded in terms of the complete set of the basis vectors: 

 |Ψ⟩ = 𝜓(𝑎)|𝑎⟩ + 𝜓(𝑏)|𝑏⟩ +  𝜓(𝑐)|𝑐⟩ + ⋯ . 

Since, the basis is an orthonormal set, the inner product, Eq. (5.2) 

 ⟨𝑎|Ψ⟩ = 𝜓(𝑎)⟨𝑎|𝑎⟩ + 𝜓(𝑏)⟨𝑎|𝑏⟩ + 𝜓(𝑐)⟨𝑎|𝑐⟩ +, ….= 𝜓(𝑎). 

The coefficient 𝜓(𝑎)  is called the wave function.  

The probability 𝑃(𝑎)  for the commuting observable 𝑨 to have the eigenvalue 𝑎 , 
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  𝑨 |Ψ⟩ = 𝑎 |Ψ⟩, 

 𝑃(𝑎) = 𝜓∗(𝑎)𝜓(𝑎) = |𝜓(𝑎)|2 , etc. 

5.1.3 A Note About Terminology 

In this part of the lecture, Susskind paid attention to the various notations used. As 

mentioned by Susskind, it is helpful “to realize a wave function can represent a state vector”. 

5.2 Measurement 
In this Lecture the concept of measurement and commutation is discussed, page 137. 

Then, Susskind returned to the single spin and a 2 × 2 Hermitian matrix, and explained this 

matrix to be represented by a sum of the three Pauli matrices and the unit matrix. 

Exercise 5.1: A 2 × 2 Hermitian matrix can be written as a sum of four terms. 
“Any 2 × 2 Hermitian matrix 𝑳 can be written as the sum of four terms, 
𝑳 = 𝑎𝜎𝑥 + 𝑏𝜎𝑦 + 𝑐𝜎𝑧 + 𝑑𝐼, 

where 𝑎, 𝑏, 𝑐, and 𝑑 are real numbers.” 
Verify this claim. 
I’s about the spin operators: 

𝑳 = 𝑎 (
0 1
1 0

) + 𝑏 (
0 −𝑖
𝑖 0

) + 𝑐 (
1 0
0 −1

) + 𝑑 (
1 0
0 1

) = (
𝑐 + 𝑑 𝑎 − 𝑖𝑏
𝑎 + 𝑖𝑏 −𝑐 + 𝑑

) , 

An Hermitian matrix: the diagonal elements being real and the other two being complex. 

 

5.3 The Uncertainty Principle 
Uncertainty is one of the hallmarks of quantum mechanics, Susskind. 

In this Lecture the general form of the uncertainty principle will be derived. 

5.4 The Meaning of Uncertainty 
 

Susskind introduces a new operator 𝑨̅ defined to be 𝑨̅ = 𝑨 − ⟨𝑨⟩, 

where ⟨𝑨⟩ is the expectation value, a real number. 

The uncertainty in 𝑨 is the so called standard deviation. 

On top of page 141 Susskind writes: “The eigenvectors of  𝑨̅ are the same as those of 𝑨 and 

the eigenvalues are just shifted so that their average is zero as well”. Maybe it is just obvious 

but let us have a look.  

For this we will use, as shown by Susskind, the identity operator 𝑰, in order to transform the 

expectation value  ⟨𝑨⟩ into an operator, 

 𝑨̅ = 𝑨 − ⟨𝑨⟩𝑰.  

For a given state |𝛹⟩ : 

𝑨̅|𝛹⟩ = (𝑨 − ⟨𝑨⟩𝑰)|𝛹⟩ = 𝑨|𝛹⟩ − ⟨𝑨⟩𝑰|𝛹⟩.  

Furthermore, we use the notation of Susskind for eigenvalues 𝑎 of the operator 𝑨. Then, 

 𝑨̅|𝛹⟩ = 𝑨|𝛹⟩ − ⟨𝑨⟩𝑰|𝛹⟩ = 𝑎|𝛹⟩ − ⟨𝑨⟩|𝛹⟩ = (𝑎 −⟨𝑨⟩)|𝛹⟩ .  

Page 141 : “In other words, the eigenvalues of 𝑨̅ are 𝑎̅ = 𝑎 − ⟨𝑨⟩.” 

In addition Susskind writes: “The probability distribution for 𝑨̅ is exactly the same as the 

distribution for 𝑨 except that it is shifted so that the average value of 𝑨̅ is zero”. 

Let’s find out and use the notation of Susskind. 

⟨𝛹|𝑨|𝛹⟩ = ⟨𝑨⟩ = ∑ 𝑎𝑎 𝑃(𝑎). 

Now, 
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 ⟨𝛹|𝑨̅|𝛹⟩ = ⟨𝛹|(𝑨 − ⟨𝑨⟩𝑰)|𝛹⟩ = ⟨𝛹|𝑨|𝛹⟩ − ⟨𝛹|⟨𝑨⟩𝑰|𝛹⟩ = ∑ 𝑎𝑎 𝑃(𝑎) − ⟨𝑨⟩⟨𝛹|𝛹⟩ =
∑ 𝑎𝑎 𝑃(𝑎) − ⟨𝑨⟩ = 0.  

The square of the uncertainty of 𝑨, (∆𝑨)𝟐 is presented in Eq. (5.3). 

5.5 Cauchy-Schwarz Inequality 
The basic mathematical inequality is the familiar triangle inequality. 

See Figure 5.1. 

5.6 The Triangle Inequality and the Cauchy-Schwarz Inequality 
With help of a picture of the triangle, Figure 5.1, Susskind derived Eq.(5.9), 

 2|𝑋||𝑌| ≥ |⟨𝑋|𝑌⟩ + ⟨𝑌|𝑋⟩|,  
 where |𝑋| and |𝑌| represent the length of the vectors, Figure 5.1 . 

This equation represents the Cauchy-Schwarz inequality, leading to the uncertainty principle. 

5.7 The General Uncertainty Principle 
The uncertainty principal is presented in Eq.(5.13), derived from Eq.(5.9): 

 ∆𝑨∆𝑩 ≥
1

2
|⟨Ψ|[𝑨, 𝑩]|Ψ⟩. 

In the next exercise we pay attention to the derivation of Eq. (5.13). 

There I assume (∆𝑨)2 ≡ ∆𝑨2, page 141. 
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Exercise 5.2 Some aspects of the Uncertainty Principal 
 
1) Show that (∆𝑨)2 = ⟨(𝑨̅)2⟩ and (∆𝑩)2 = ⟨(𝑩̅)2⟩. 

On page 141 Susskind: (∆𝑨)2 may be written as (∆𝑨)2 = ⟨𝛹|(𝑨̅)2|𝛹⟩. 

With the notation ⟨𝛹|(𝑨̅)2|𝛹⟩ = ⟨(𝑨̅)2⟩ , we have (∆𝑨)2 = ⟨(𝑨̅)2⟩ .  
I am afraid this is just playing with symbols and no proof at all. We have to proof it, using Eq. (5.4):                      

 (∆𝑨)2 = ⟨𝛹|(𝑨̅)2|𝛹⟩ = ∑ (𝑎𝑖 − ⟨𝑨⟩)
2𝑃(𝑎𝑖)𝑖  ,                     (L5.1)       

here, for convenience, a notation slightly different from Susskind’s is used. 
 𝑎𝑖  are the eigenvalues of operator 𝑨 with eigenvectors |𝑎𝑖⟩. 
Remark: Susskind introduced  (L5.1)  or Eq. (5.3) as a definition.      

Now we expand the left-hand side of Eq. (L5.1), with 𝑨̅ = 𝑨 − ⟨𝑨⟩ : 

⟨𝛹|(𝑨̅)2|𝛹⟩ = ⟨𝛹|(𝑨 − ⟨𝑨⟩)𝟐|𝛹⟩ = ⟨𝛹|𝑨𝟐|𝛹⟩ − 2⟨𝑨⟩⟨𝛹|𝑨|𝛹⟩ + ⟨𝛹|⟨𝑨⟩
2
|𝛹⟩ = 

= ⟨𝛹|𝑨𝟐|𝛹⟩ − 2⟨𝑨⟩
2
+ ⟨𝑨⟩

2⟨𝛹|𝛹⟩ =  ⟨𝛹|𝑨𝟐|𝛹⟩ − ⟨𝑨⟩
2
.     (L5.2) 

Keep in mind: in the operator mode ⟨𝑨⟩ should be read as ⟨𝑨⟩𝑰. 

The right-hand side of Eq. (L5.1) is ∑ (𝑎𝑖
2

𝑖 − 2𝑎𝑖⟨𝑨⟩ + ⟨𝑨⟩
2
)𝑃(𝑎𝑖) = 

= ∑ [𝑎𝑖
2𝑃(𝑎𝑖) − 2𝑎𝑖⟨𝑨⟩𝑃(𝑎𝑖) +𝒊 ⟨𝑨⟩

2
 𝑃(𝑎𝑖)].      (L5.3) 

With ⟨𝑨⟩ = ∑ 𝑎𝑖𝑖  𝑃(𝑎𝑖) , and ∑ 𝑃(𝑎𝑖) = 1:𝑖  
Eq. (L 5.3) results into: 

  (∆𝑨)2 = ∑ 𝑎𝑖
2𝑃(𝑎𝑖) − ⟨𝑨⟩

2
𝑖  .                       (L5.4)     

The equality (L5.1) can be written with (L5.2) and (L5.4) as                                                                     

 ⟨𝛹|𝑨𝟐|𝛹⟩ − ⟨𝑨⟩
2
= ∑ 𝑎𝑖

2𝑃(𝑎𝑖) −𝑖 ⟨𝑨⟩
2
 .       (L5.5) 

Does (L.5.5) lead to a contradiction? 

Now we investigate whether or not ⟨𝛹|𝑨𝟐|𝛹⟩ =  ∑ 𝑎𝑖
2

𝑖 𝑃(𝑎𝑖). 
To this end we expand |𝛹⟩ into the basis of eigenvectors of the operator 𝑨 : 
|𝛹⟩ = ∑ 𝛼𝑖|𝑎𝑖⟩𝑖  .  
Let 𝑨 operate on |𝛹⟩, then, 
 𝑨|𝛹⟩ = ∑ 𝛼𝑖𝑖 𝑨|𝑎𝑖⟩ = ∑ 𝛼𝑖𝑎𝑖|𝑎𝑖⟩𝑖 .  

Now flip the ket |𝛹⟩ into the bra ⟨𝛹|, and we have ⟨𝛹| = ∑ 𝛼𝑗
∗

𝑗 ⟨𝑎𝑗| . 

Let 𝑨 operates on ⟨𝛹|, this becomes ⟨𝛹|𝑨 = ∑ 𝛼𝑗
∗

𝑗 ⟨𝑎𝑗|𝑨 = ∑ 𝛼𝑗
∗

𝑗 𝛼𝑗
∗⟨𝑎𝑗|. 

The inner product of ⟨𝛹|𝑨, and 𝑨|𝛹⟩, results into: 

⟨𝛹|𝑨𝟐|𝛹⟩ = ∑ 𝛼𝒋
∗𝛼𝑗
∗𝛼𝑖𝑎𝑖⟨𝑎𝑗|𝑎𝑖⟩ = ∑ 𝛼𝑖

∗
𝑖𝒊𝒋 𝛼𝑖

∗𝑎𝑖
2 , since |𝑎𝑖⟩, is an orthonormal base.  

With 𝛼𝑖
∗𝛼𝑖, the probability 𝑃 to find the observable in state 𝑖, we obtain the expression we are looking for:  

 ⟨𝛹|𝑨𝟐|𝛹⟩ =  ∑ 𝑎𝑖
2

𝑖 𝑃(𝑎𝑖), and consequently, 

 (∆𝑨)2 = ⟨(𝑨̅)2⟩. 
For the operator 𝑩 with eigenvalues 𝑏𝑖  and eigenvectors |𝑏𝑖⟩, we derive similarly  
(∆𝑩)2 = ⟨(𝑩̅)2⟩.  
2) Show that [𝑨̅, 𝑩̅] = [𝑨, 𝑩].         (L5.6) 
𝑨̅ = 𝑨 − ⟨𝑨⟩, and 𝑩̅ = 𝑩 − ⟨𝑩⟩. Substitute both expressions in Eq. (L5.6). After some algebra we obtain, 
using ⟨𝑨⟩  and ⟨𝑩⟩ to be real numbers: 
[𝑨̅, 𝑩̅] = 𝑨𝑩 − 𝑩𝑨 = [𝑨,𝑩].  
3) Using (∆𝑨)2 = ⟨(𝑨̅)2⟩, (∆𝑩)2 = ⟨(𝑩̅)2⟩, and [𝑨̅, 𝑩̅] = [𝑨, 𝑩], show that:  

∆𝑨∆𝑩 ≥
1

2
|⟨𝛹|[𝑨, 𝑩]|𝛹⟩| . 

With Eq. 5.12: 

 2√⟨𝑨𝟐⟩⟨𝑩𝟐⟩ ≥ |⟨𝛹|[𝑨,𝑩]|𝛹⟩|, replacing 𝑨 and 𝑩 with  𝑨̅  and 𝑩̅ respectively, 𝑨̅ and 𝑩̅ both Hermitian 
operators, we obtain: 

2√⟨(𝑨̅)𝟐⟩⟨(𝑩̅)𝟐⟩ ≥ |⟨𝛹|[𝑨̅, 𝑩̅]|𝛹⟩|.       (L.5.7)  
Now with the results of:  

1) (∆𝑨)2 = ⟨(𝑨̅)𝟐⟩, and (∆𝑩)2 = ⟨(𝑩̅)2⟩,  
and                                                                   

 2) [𝑨̅, 𝑩̅] = [𝑨, 𝑩],  

substituted in Eq. (L5.7) → ∆𝑨∆𝑩 ≥
1

2
|⟨𝛹|[𝑨, 𝑩]|𝛹⟩| . 
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Lecture 6. Combining Systems: Entanglement. 

 
6.1 Mathematical Interlude: Tensor Products 

6.1.1 Meet Alice and Bob 

This lecture is about composite systems: 𝐴 and 𝐵. 

There are two spaces of states: 𝑆𝐴 and 𝑆𝐵. 

Susskind demonstrates a composite system by a quantum mechanical coin, 𝐴, and a 

quantum die, 𝐵. 

6.1.2 Representing the Combined System 

The combined system is constructed by a tensor product. 

The symbol for this tensor product is: ⊗. 

In Figure 6.1, Susskind presented the state labels for the combined system: 𝑆𝐴𝐵. On the 

pages 153 and 154, Susskind explained the notation for the combined system 𝑆𝐴𝐵. 

At the end of this section, Susskind refers to an ongoing discussion, initiated by Einstein, 

about the differences between classical physics and quantum physics (Smolin,1). 

6.2 Classical Correlation 
With two coins Susskind explained the classical correlation. At the top of page 158 the 

statistical correlation is presented. 

Exercise 6.1 Condition for zero correlation 
Prove that if 𝑃(𝑎, 𝑏) factorizes, then the correlation between 𝑎 and 𝑏 is zero. 
When 𝑃(𝑎, 𝑏) factorizes, 𝑎 and 𝑏 are independent. So, Eq.(6.3): 
 𝑃(𝑎, 𝑏) = 𝑃𝐴(𝑎)𝑃𝐵(𝑏). 
The values of 𝐴’s observations are 𝜎𝐴 and the 𝐵’s observations are 𝜎𝐵. 
Then, 

 ⟨𝜎𝐴𝜎𝐵⟩ = ∑ 𝑎𝑖𝑏𝑗𝑃(𝑎𝑖𝑖,𝑗 , 𝑏𝑗) = ∑ 𝑎𝑖𝑃𝐴(𝑎𝑖)𝑏𝑗𝑃𝐵(𝑏𝑗)𝑖,𝑗 = ∑ 𝑎𝑖𝑃𝐴(𝑎𝑖)𝑖 [∑ 𝑏𝑗𝑃𝐵(𝑏𝑗)𝑗 ] = 

 = ∑ 𝑎𝑖𝑃𝐴(𝑎𝑖)𝑖 ⟨𝜎𝐵⟩ = ⟨𝜎𝐵⟩ ∑ 𝑎𝑖𝑃𝐴(𝑎𝑖)𝑖 = ⟨𝜎𝐵⟩⟨𝜎𝐴⟩. 
So, 
 ⟨𝜎𝐴⟩⟨𝜎𝐵⟩ → ⟨𝜎𝐴𝜎𝐵⟩ = ⟨𝜎𝐴⟩⟨𝜎𝐵⟩ , the expectation value of the product is the product of the expectation 
values. 
Hence, 
 ⟨𝜎𝐴𝜎𝐵⟩ − ⟨𝜎𝐴⟩⟨𝜎𝐵⟩ = 0, 
the correlation is zero. 
Note, I did use Susskind’s notation. However, an observation leads to the measurement of 𝑎𝑖, or 𝑏𝑗. So, 

instead of using 〈𝜎𝐴〉 and/or 〈𝜎𝐵〉, I should have used 〈𝑎〉 = ∑ 𝑎𝑖𝑃𝐴𝑖 (𝑎𝑖),  
 〈𝑏〉 = ∑ 𝑏𝑗𝑃𝐵(𝑏𝑗)𝑗  and ⟨𝑎𝑏⟩ = ∑ 𝑎𝑖𝑏𝑗𝑃(𝑎𝑖𝑖,𝑗 , 𝑏𝑗). 

 

 

To conclude this section, Susskind discussed the meaning of probability in classical physics. 

6.3 Combining Quantum Systems 
Now, Susskind repeated the experiment with 𝐴 and 𝐵 using spins instead of coins. 

For a combined system, |𝑎𝑏⟩ is used to represent the ket of this system. 

Here, matrix elements are again introduced. Matrix elements are important parts of the 

quantum mechanical machinery. This explained on page 161. 
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6.4 Two spins 
The notations for the two-spin system is presented.  

The space of states is a tensor product. 

The basis states are presented, top page 163. 

6.5 Product States. 
The product state is the simplest type of state for the composite system. 

Susskind based the product state on the two states |𝐴⟩ and |𝐵⟩. 

I do not use the Susskind notation: |𝐴} = 𝛼𝑢|𝑢} + 𝛼𝑑|𝑑}.  

I use the bra and ket notation of Dirac. 

Reminder normalization: 

 ⟨𝐴|𝐴⟩ = (⟨𝑢|𝛼𝑢
∗ + ⟨𝑑|𝛼𝑑

∗)(𝛼𝑢|𝑢⟩ + 𝛼𝑑|𝑑⟩) = 1, 

with 

 𝛼𝑢
∗𝛼𝑑⟨𝑢|𝑑⟩ = 0, 𝛼𝑑

∗𝛼𝑢⟨𝑑|𝑢⟩ = 0 . 

The state of 𝐵 is: 

 𝛽𝑢|𝑢⟩ + 𝛽𝑑|𝑑⟩. 

The product state is presented at the top of page 164, Eq. (6.5). 

 

Exercise 6.2: About normalization of a product state 
Show that if the two normalization conditions of Eqs. 6.4 are satisfied, then the state-vector of Eq. 6.5 is 
automatically normalized as well. In other words, show that for this  |𝑝𝑟𝑜𝑑𝑢𝑐𝑡 𝑠𝑡𝑎𝑡𝑒⟩, normalizing the 
overall state-vector does not put any additional constraints on the 𝛼’s and 𝛽’s. 
 𝐴’s state: 
 𝛼𝑢|𝑢⟩ + 𝛼𝑑|𝑑⟩, 
and the state of 𝐵: 
  𝛽𝑢|𝑢⟩ + 𝛽𝑑|𝑑⟩. 
The normalization condition for both states gives, the usual procedure with inner products: 
𝛼𝑢
∗𝛼𝑢 + 𝛼𝑑

∗𝛼𝑑 = 1, and 𝛽𝑢
∗𝛽𝑢 + 𝛽𝑑

∗𝛽𝑑 = 1, Eqs.(6.4). 
The combined system: 
 |𝑝𝑟𝑜𝑑𝑢𝑐𝑡 𝑠𝑡𝑎𝑡𝑒⟩ = [ 𝛼𝑢|𝑢⟩ + 𝛼𝑑|𝑑⟩] ⊗[ 𝛽𝑢|𝑢⟩ + 𝛽𝑑|𝑑⟩]. 
With the composite notation, the product state-vector |𝛹⟩ becomes, Eq.(6.5): 
|𝛹⟩ = 𝛼𝑢𝛽𝑢|𝑢𝑢⟩ + 𝛼𝑢𝛽𝑑|𝑢𝑑⟩ + 𝛼𝑑𝛽𝑢|𝑑𝑢⟩ + 𝛼𝑑𝛽𝑑|𝑑𝑑⟩. 
For this product state-vector to be normalized, the condition is: ⟨𝛹|𝛹⟩ = 1. 
The bra ⟨𝛹| results from the complex conjugate of Eq.(6.5): 
⟨𝛹|= ⟨𝑢𝑢|𝛼𝑢

∗𝛽𝑢
∗ + ⟨𝑢𝑑|𝛼𝑢

∗𝛽𝑑
∗ + ⟨𝑑𝑢|𝛼𝑑

∗𝛽𝑢
∗ + ⟨𝑑𝑑|𝛼𝑑

∗𝛽𝑑
∗.    (L6.1) 

Now we take the inner product of ⟨𝛹| and |𝛹⟩, thereby using ⟨𝑎𝑏|𝑎′𝑏′⟩ = 𝛿𝑎𝑎′𝛿𝑏𝑏′ defined at page 161. 
The Kronecker  delta is zero unless 𝑎 = 𝑎′ and 𝑏 = 𝑏′.  
For example: ⟨𝑢𝑢|𝑑𝑑⟩ = 0.  
So, with |𝛹⟩, given in Eq.(6.5) and ⟨𝛹|,  given in (L6.1) : 
⟨𝛹|𝛹⟩ = (𝛼𝑢

∗𝛼𝑢 + 𝛼𝑑
∗𝛼𝑑)(𝛽𝑢

∗𝛽𝑢 + 𝛽𝑑
∗𝛽𝑑) = 1. 

The normalization creates no additional constraints on the 𝛼’s and 𝛽’s.  
 

 

6.6 Counting Parameters for the Product State 
In this Lecture, Susskind demonstrates an important technique: counting parameters to 

illustrate consistency. Do compare this with dimension analysis. 
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6.7 Entangled States. 
As mentioned in Lecture 6.5: “… most of the state vectors in the product space are not 

product states.” 

At the top of page 166: “… we only have one normalization condition.” 

Entanglement is introduced. 

 

Exercise 6.3: The maximal entangled state-singlet 
Prove that the state |𝑠𝑖𝑛𝑔⟩ cannot be written as a product state. 

|𝑠𝑖𝑛𝑔⟩ =
1

√2
(|𝑢𝑑⟩ − |𝑑𝑢⟩). 

Eq. (6.5), page 164, the product state: 
  |𝛹⟩ = 𝛼𝑢𝛽𝑢|𝑢𝑢⟩ + 𝛼𝑢𝛽𝑑|𝑢𝑑⟩ + 𝛼𝑑𝛽𝑢|𝑑𝑢⟩ + 𝛼𝑑𝛽𝑑|𝑑𝑑⟩,  
represents the product state. Compare Eq. (6.5)  with the expression for |𝑠𝑖𝑛𝑔⟩:  

 |𝑠𝑖𝑛𝑔⟩ =
1

√2
(|𝑢𝑑⟩ − |𝑑𝑢⟩). 

Then, 
  𝛼𝑢𝛽𝑢|𝑢𝑢⟩ = 0, 
 ⟹ 𝛼𝑢 and/or 𝛽𝑢 are/is zero.  
Consequently, 
 𝛼𝑢𝛽𝑑|𝑢𝑑⟩ = 0, or   𝛼𝑑𝛽𝑢|𝑑𝑢⟩ = 0 . 
Also, 
 𝛼𝑑𝛽𝑑|𝑑𝑑⟩ = 0, 
 ⟹ 𝛼𝑑  and/or 𝛽𝑑  are/is zero. 
Consequently, 
 𝛼𝑢𝛽𝑑|𝑢𝑑⟩ = 0, or   𝛼𝑑𝛽𝑢|𝑑𝑢⟩ = 0 . 
Hence, the state |𝑠𝑖𝑛𝑔⟩ cannot be written as a product state. 

 

Remark: Susskind writes on page 160: ”We will make frequently use of the notation |𝑎𝑏⟩ to 

label a single basis vector of the combined system”. On page 162 he writes: “Let’s work in a 

basis in which the 𝑧 components of both spins are specified. The basis vectors are:         

|𝑢𝑢⟩, |𝑢𝑑⟩, |𝑑𝑢⟩, |𝑑𝑑⟩,….”. On page 164 and page 165 he writes: “I’ll mention here that tensor 

products and product states are two different things, despite their similar-sounding names. 

(Footnote: Sometimes, we’ll use the term tensor product space, or just product space, instead 

of tensor product). A tensor product is a vector space for studying composite systems. A 

product state is a state-vector. It’s one of the many state-vectors that inhabit a product 

space. As we will see, most of the state-vectors in the product space are not product states”. 

On page 169 Susskind writes: “Now let’s consider how the operators should be defined when 

acting on the tensor product states |𝑢𝑢⟩, |𝑢𝑑⟩, |𝑑𝑢, and |𝑑𝑑⟩”. Here Susskind uses the 

expression: tensor product states. These are the single basis vectors for the combined 

system. The word “product” belongs to tensor. 

Page 167: Susskind spent a few words on the mystery of entanglement. 

6.8 Alice and Bob’s Observables. 
In this Lecture, Susskind presents the results of the spin operators acting on the system: a 

composite space of states. See Eqs. (6.6) and (6.7). 

In this Lecture the observables of spin measurements are presented. Furthermore, the 

convention how to operate on the product states. Attention is paid to the tensor product 

space. Compare Eqs. (6.9) and (6.10). 
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At the bottom of page 170, Susskind makes the remark: “If we were being pedantic, we 

would insist on writing the tensor product version of 𝜎𝑧 and 𝜏𝑥 as 𝜎𝑧⊗ 𝐼 and 𝐼 ⊗ 𝜏𝑥…….”. 

Pedantic? It depends. The alternative is to remember, Eq.(6.9), 

 𝜎𝑧|𝑑𝑢⟩ = −|𝑑𝑢⟩,  

 𝜎𝑧 operates on 𝑑, and the result is −|𝑑𝑢⟩. 

To show the elegance of Tensor Calculus, see the example below. 

 

Example of the elegance of Tensor Calculus 
 
Using the tensor product for 𝐼 ⊗ 𝜏𝑥: 

 (
1 0
0 1

) ⊗ (
0 1
1 0

) = (

0 1
1 0

0 0
0 0

0 0
0 0

0 1
1 0

), 

and e.g.,  

 |𝑢𝑑⟩ = |𝑢⟩ ⊗ |𝑑⟩ = (
1
0
) ⊗ (

0
1
) = (

0
1
0
0

), 

we have  

 (𝐼 ⊗ 𝜏𝑥)(|𝑢⟩ ⊗ |𝑑⟩) = (

0 1
1 0

0 0
0 0

0 0
0 0

0 1
1 0

)(

0
1
0
0

) = (

1
0
0
0

) = (
1
0
)⊗ (

1
0
) = |𝑢⟩ ⊗ |𝑢⟩ = |𝑢𝑢⟩.  

See Eq.(6.8). 
This seems to be a lot of work. On the other hand, studying, e.g.,  Quantum Mechanics, Special Relativity 
end Classical Field Theory(Susskind Volume III) , applying tensor calculus is not a real burden. 
Next the product of operators 
  𝜎𝑥𝜏𝑥, 
operating on |𝑢𝑢⟩.  

 𝜎𝑥𝜏𝑥  → (
0 1
1 0

)⊗ (
0 1
1 0

) = (

0 0
0 0

0 1
1 0

0 1
1 0

0 0
0 0

) . 

 |𝑢𝑢⟩ → (1
0
)⊗ (

1
0
) = (

1
0
0
0

). 

Now 

  𝜎𝑥𝜏𝑥|𝑢𝑢⟩ ⟹ (

0 0
0 0

0 1
1 0

0 1
1 0

0 0
0 0

)(

1
0
0
0

) = (

0
0
0
1

) ⟹ |𝑑𝑑⟩. 

From this result we conclude  𝜎𝑥  operates on the left part of |𝑢𝑢⟩, and 𝜏𝑥  on the right part of |𝑢𝑢⟩. 
Note; in Lecture 7.1.2 Susskind showed the elegance of tensor products with additional examples. 
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Exercise 6.4: operate the spin matrix operators on the up and down column vectors. 
1)Use the matrix forms of 𝜎𝑥 , 𝜎𝑦 and 𝜎𝑧 and the column vectors for |𝑢⟩ and |𝑑⟩  to verify  Eqs. (6.6). Note: I 

don’t use Susskind’s notation |}. 
2)Then, use Eqs. (6.6) and (6.7) to write the equations that were left out of Eqs. (6.8). Use the appendix to 
check your answers. 
ad 1) Let us take for example 𝜎𝑦 and |𝑢⟩: 

𝜎𝑦|𝑢⟩ = 𝑖|𝑑⟩. We write this expression in matrix and column vector representation: 

(
0 −𝑖
𝑖 0

) (
1
0
) = 𝑖 (

0
1
).  

The left-hand side becomes (
0
𝑖
) and this equals the right-hand side. 

ad 2) Let us for example write out the equation 𝜎𝑧|𝑢𝑑⟩.  
The convention, with Eq. 6.6: 
 𝜎𝑧|𝑢⟩ = |𝑢⟩,  
we have 
 𝜎𝑧|𝑢𝑑⟩ = |𝑢𝑑⟩. 

 

Exercise 6.5: spin operators and the product state. 
1) Prove the following theorem: 
When one of A’s (𝜎) or B’s (𝜏) spin operators acts on a product state, the result is still a product state(not 
entangled). See also Exercise 6.2. 
2) Show that in a product state(not entangled), the expectation value of any component of 𝜎  or 𝜏  is exactly 
the same as it would be in the individual single-spin states. 
ad 1) So let’s take 𝜎𝑥  and the product state given in Eq.(6.5): 
𝜎𝑥|𝛹⟩ = 𝜎𝑥(𝛼𝑢𝛽𝑢|𝑢𝑢⟩ + 𝛼𝑢𝛽𝑑|𝑢𝑑⟩ + 𝛼𝑑𝛽𝑢|𝑑𝑢⟩ + 𝛼𝑑𝛽𝑑|𝑑𝑑⟩),    (L6.2) 
we know now how 𝜎𝑥  operates on the basis vectors. So Eq. (L6.2) becomes: 
𝜎𝑥|𝛹⟩ = 𝛼𝑢𝛽𝒖|𝑑𝑢⟩ + 𝛼𝑢𝛽𝑑|𝑑𝑑⟩ + 𝛼𝑑𝛽𝑢|𝑢𝑢⟩ + 𝛼𝑑𝛽𝒅|𝑢𝑑⟩,  
this can be written as: 
(𝛼𝑢|𝑑⟩ + 𝛼𝑑|𝑢⟩) ⊗ (𝛽𝑢|𝑢⟩ + 𝛽𝑑|𝑑⟩), representing a product state, the Theorem. 
ad 2) The expectation value of any component of 𝜎  and 𝜏  is the same as in the single-spin state. 
Remember: we work in a basis in which the 𝑧 components of both spins are specified.                                                 
For the product state |𝛹⟩, the expectation value:  
 ⟨𝜎𝑥⟩ = ⟨𝛹|𝜎𝑥|𝛹⟩.  
With (L6.2) and Eq. 6.5, the expectation value, using ⟨𝑎𝑏|𝑎′𝑏′⟩ = 𝛿𝑎𝑎′𝛿𝑏𝑏′ : 
 ⟨𝜎𝑥⟩ = (𝛼𝑢

∗𝛼𝑑 + 𝛼𝑑
∗𝛼𝑢)(𝛽𝑢

∗𝛽𝑢 + 𝛽𝑑
∗𝛽𝑑).  

Use 𝛽𝑢
∗𝛽𝑢 + 𝛽𝑑

∗𝛽𝑑 = 1, the normalisation condition for a product state Eq.(6.4), we obtain: 
  ⟨𝜎𝑥⟩ = (𝛼𝑢

∗𝛼𝑑 + 𝛼𝑑
∗𝛼𝑢) 

The state vectors |𝑎𝑏⟩, are taken orthonormal. This is expressed by the Kronecker delta symbol ⟨𝑎𝑏|𝑎′𝑏′⟩ =
𝛿𝑎𝑎′𝛿𝑏𝑏′. 
For example ⟨𝑢𝑑|𝑢𝑢⟩  = 𝛿𝑢𝑑𝛿𝑢𝑢 = 0 and ⟨𝑢𝑑|𝑢𝑑⟩ = 𝛿𝑢𝑢𝛿𝑑𝑑 = 1.   
The single-spin state:   
 |𝐴⟩ = 𝛼𝑢|𝑢⟩ + 𝛼𝑑|𝑑⟩ gives for the expectation value ⟨𝜎𝑥⟩ = ⟨𝐴|𝜎𝑥|𝐴⟩ : 
⟨𝜎𝑥⟩ = 𝛼𝑢

∗𝛼𝑑 + 𝛼𝑑
∗𝛼𝑢. The same as for the product state.  

Similarly, we find for ⟨𝜎𝑦⟩ : 

⟨𝜎𝑦⟩ = ⟨𝛹|𝜎𝑦|𝛹⟩ = 𝑖(𝛼𝑑
∗𝛼𝑢 − 𝛼𝑢

∗𝛼𝑑), the same as for the single-spin state.  

Finally: 
⟨𝜎𝑧⟩ = ⟨𝛹|𝜎𝑧|𝛹⟩ = −𝛼𝑢

∗𝛼𝑑 + 𝛼𝑑
∗𝛼𝑢, the same as for the single-spin state.  

For the single-spin state we proved in Lecture 3: Eq. (3.27). There Susskind writes: “Moreover, this is true for 
any state”. We have proven in this Exercise, Eq (3.27) to be true for the two-spin product state. 

 

For completeness, Eqs. (3.27) and (6.11): 

 ⟨𝜎𝑥⟩
2
+ ⟨𝜎𝑦⟩

2
+ ⟨𝜎𝑧⟩

2
= (𝛼𝑢

∗𝛼𝑢 + 𝛼𝑑
∗𝛼𝑑)

2 = 1. 
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Now we must prove this for 𝜏 . It will be of no surprise that we find the same results for the 

same product state |𝛹⟩ and the single-spin state |𝐵⟩ = 𝛽𝑢|𝑢⟩ + 𝛽𝑑|𝑑⟩.  

Furthermore, the normalisation condition we use in this case reads: 𝛼𝑢
∗𝛼𝑢 + 𝛼𝑑

∗𝛼𝑑 = 1 and 

again the Kronecker delta for the two-spin state.  

Another example:    ⟨𝑑𝑑|𝑢𝑑⟩ = 𝛿𝑑𝑑𝛿𝑢𝑑 = 0, and ⟨𝑑𝑢|𝑑𝑢⟩ = 𝛿𝑑𝑑𝛿𝑢𝑢 = 1. 

Susskind presented on pages 173 and 174 the expectation values for 𝜎𝑥   and the entangled 

state |𝑠𝑖𝑛𝑔⟩. 

6.9 Composite Observables 
Remark: On page 176 Susskind writes: “But for Alice and Bob, it is easy to see that every 

component of 𝜎(≡ 𝜎 ) commutes with every component of 𝜏(≡ 𝜏  )“. Every component? Well, 

see Exercise (6.6) below: [𝜎𝑥 , 𝜏𝑦] = 2𝑖𝜎𝑧 . However, should we read this sentence on 

commutation as, e.g., [𝜎𝑥, 𝜏𝑥] = [𝜎𝑧 , 𝜏𝑧] = [𝜎𝑦, 𝜏𝑦] = 0 ? I think so. 

In this Lecture Susskind deals with the composite operators and the related observables. As 

an example, the state |𝑠𝑖𝑛𝑔⟩ is used. 

 

Exercise 6.6 The expectation value of spin operators for a singlet state 
1)Assume Charlie has prepared the two spins in the singlet state. This time, Bob measures 𝜏𝑦 and Alice 

measures 𝜎𝑥. What is the expectation value of 𝜎𝑥𝜏𝑦? 

2) What does this say about the correlation between the two measurements? 

ad 1) 𝜎𝑥𝜏𝑦|𝑠𝑖𝑛𝑔⟩ = 𝜎𝑥𝜏𝑦
1

√2
(|𝑢𝑑⟩ − |𝑑𝑢⟩),  

where 𝜎𝑥  operates on the left-hand side of the basis vector and 𝜏𝑦 operates on the right-hand side of the 

basis vector. So, 

𝜎𝑥𝜏𝑦|𝑠𝑖𝑛𝑔⟩ = 𝜎𝑥
1

√2
(−𝑖|𝑢𝑢⟩ − 𝑖|𝑑𝑑⟩) = −

𝑖

√2
(|𝑑𝑢⟩ + |𝑢𝑑⟩). 

The last term between brackets is not a singlet and |𝑠𝑖𝑛𝑔⟩ is not an eigenvector of 𝜎𝑥𝜏𝑦.  

The expectation value of 𝜎𝑥𝜏𝑦: 

 ⟨𝜎𝑥𝜏𝑦⟩ = ⟨𝑠𝑖𝑛𝑔|𝜎𝑥𝜏𝑦|𝑠𝑖𝑛𝑔⟩ = −
𝑖

√2
⟨𝑠𝑖𝑛𝑔|(|𝑑𝑢⟩ + |𝑢𝑑⟩) = 

  
−𝑖

2
(⟨𝑢𝑑|−⟨𝑑𝑢|)(|𝑑𝑢⟩ + |𝑢𝑑⟩) =  

−𝑖

2
(⟨𝑢𝑑|𝑢𝑑⟩ + ⟨𝑢𝑑|𝑑𝑢⟩ − ⟨𝑑𝑢|𝑢𝑑⟩ − ⟨𝑑𝑢|𝑑𝑢⟩) =

−𝑖

2
(1 + 0 − 0 − 1) = 0.  

Use has been made of the Kronecker delta for the combined state. 
The expectation value is zero. 

ad 2) The correlation  ⟨𝜎𝑥𝜏𝑦⟩ − ⟨𝜎𝑥⟩⟨𝜏𝑦⟩ is found form the above result for ⟨𝜎𝑥𝜏𝑦⟩ and the expectation values 

⟨𝜎𝑥⟩ and ⟨𝜏𝑦⟩ as calculated by Susskind on page 173 and 174.  

Then,  

⟨𝜎𝑥𝜏𝑦⟩ − ⟨𝜎𝑥⟩⟨𝜏𝑦⟩ = 0 − 0 = 0 → no correlation.  

Do 𝜎𝑥  and 𝜏𝑦 commute: [𝜎𝑥, 𝜏𝑦] = 0 zero?  

With the Pauli matrices we obtain: 

[𝜎𝑥 , 𝜏𝑦] = 𝜎𝑥𝜏𝑦 − 𝜏𝑦𝜎𝑥 = (
0 1
1 0

) (
0 −𝑖
𝑖 0

) − (
0 −𝑖
𝑖 0

) (
0 1
1 0

) = 2𝑖 (
1 0
0 −1

) = 2𝑖𝜎𝑧 ≠ 0. 

These components of  𝜎(≡ 𝜎 ) and 𝜏(≡ 𝜏  ) do not commute . Nothing new: see page 118 and Eq. (4.26). This 
defines the expression “every component” of page 176 and explains the question mark in the above remark. 

However, I think the remark of Susskind means: [𝜎𝑥 , 𝜏𝑥] = [𝜎𝑧 , 𝜏𝑧] = [𝜎𝑦 , 𝜏𝑦] = 0. 

 

 

A reminder for the subsequent exercises: 

 ⟨𝑢𝑢|𝑢𝑢⟩ = 1, 

 ⟨𝑢𝑑|𝑢𝑑⟩ = 1, 
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 ⟨𝑑𝑢|𝑑𝑢⟩ = 1, 

 ⟨𝑑𝑑|𝑑𝑑⟩ = 1 . 

Exercise 6.7: The expectation value of spin operators for a triplet state 
Next, Charlie prepares the spins in a different state, called |𝑇1⟩, where  

|𝑇1⟩ =
1

√2
(|𝑢𝑑⟩ + |𝑑𝑢⟩).  

In these examples, 𝑇 stands for triplet. These triplet states are completely different from the states in the 
coin and die examples. 
What are the expectation values for 𝜎𝑧𝜏𝑧, 𝜎𝑥𝜏𝑥, and 𝜎𝑦𝜏𝑦? 

⟨𝜎𝑧𝜏𝑧⟩ = ⟨𝑇1|𝜎𝑧𝜏𝑧|𝑇1⟩. With Eqs. 6.8: 

⟨𝜎𝑧𝜏𝑧⟩ = −
1

2
(⟨𝑢𝑑|+⟨𝑑𝑢|)(|𝑢𝑑⟩ + |𝑑𝑢⟩), 

where use has been made of Table 1 of the Appendix. 
Applying the Kronecker delta for the combined state: ⟨𝜎𝑧𝜏𝑧⟩ = −1. 
This can be obtained in a slightly different way. 

 𝜎𝑧𝜏𝑧|𝑇1⟩ = −
1

√2
(|𝑢𝑑⟩ + |𝑑𝑢⟩) = −|𝑇1⟩. We see |𝑇1⟩ to be an eigenvector of the operator 𝜎𝑧𝜏𝑧 with 

eigenvalue −1. The expectation value can then be obtained in the following way: ⟨𝜎𝑧𝜏𝑧⟩ = ⟨𝑇1|𝜎𝑧𝜏𝑧|𝑇1⟩ =
−⟨𝑇1|𝑇1⟩ = −1. 
Similarly we have for ⟨𝜎𝑥𝜏𝑥⟩ = 1, where 𝜎𝑥𝜏𝑥|𝑇1⟩ = |𝑇1⟩. We see |𝑇1⟩ to be an eigenvector of the operator 
𝜎𝑥𝜏𝑥, with eigenvalue +1 .  
And  𝜎𝑦𝜏𝑦|𝑇1⟩ = |𝑇1⟩.   

The triplet |𝑇1⟩  is an eigenvector of the operator 𝜎𝑦𝜏𝑦, with eigenvalue +1. 

The expectation value ⟨𝜎𝑦𝜏𝑦⟩ = 1 . 

 ⟨𝑇1|𝜎𝑥|𝑇1⟩ =
1

2
(⟨𝑢𝑑|+⟨𝑑𝑢|)𝜎𝑥(|𝑢𝑑⟩ + |𝑑𝑢⟩) =

1

2
(⟨𝑢𝑑|+⟨𝑑𝑢|)(|𝑢𝑑⟩ − |𝑑𝑢⟩) = 

  = 1 + 0 + 0 − 1 = 0 , 
where use has been made of the Kronecker delta for combined states. 
 Similarly  

⟨𝜎𝑦⟩ = 0, and ⟨𝜎𝑧⟩ = 0.  

Then, e.g.,  

 ⟨𝜎𝑦𝜏𝑦⟩ − ⟨𝜎𝑦⟩⟨𝜏𝑦⟩ = 1 

Consequently, we have perfect correlation when maximally correlated. 
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Exercise 6.8 The expectation value of spin operators for the other two triplet states 
Do the same as in Exercise 6.7 for the other two entangled triplet states, 

|𝑇2⟩ =
1

√2
(|𝑢𝑢⟩ + |𝑑𝑑⟩) and |𝑇3⟩ =

1

√2
(|𝑢𝑢⟩ − |𝑑𝑑⟩), and interpret. 

|𝑇2⟩ :  
⟨𝜎𝑧𝜏𝑧⟩, with Eq.(6.8) or Appendix Table 1: 

𝜎𝑧𝜏𝑧|𝑇2⟩ =
1

√2
(|𝑢𝑢⟩ + |𝑑𝑑⟩) = |𝑇2⟩.  

So, 
 |𝑇2⟩, is an eigenvector of the operator 𝜎𝑧𝜏𝑧 with eigenvalue +1.  
Consequently, 
 ⟨𝜎𝑧𝜏𝑧⟩ = ⟨𝑇2|𝜎𝑧𝜏𝑧|𝑇2⟩ = ⟨𝑇2|𝑇2⟩ = 1. 
⟨𝜎𝑥𝜏𝑥⟩, with Eq.(6.8):  

 𝜎𝑥𝜏𝑥|𝑇2⟩ =
1

√2
(|𝑑𝑑⟩ + |𝑢𝑢⟩) = |𝑇2⟩.  

So, 
 |𝑇2⟩, is an eigenvector of the operator 𝜎𝑥𝜏𝑥 with eigenvalue +1.  
The expectation value ⟨𝜎𝑥𝜏𝑥⟩ = ⟨𝑇2|𝑇2⟩ = 1. 

⟨𝜎𝑦𝜏𝑦⟩:  𝜎𝑦𝜏𝑦|𝑇2⟩ = −
1

√2
(|𝑑𝑑⟩ + |𝑢𝑢⟩) = −|𝑇2⟩.  

|𝑇2⟩, is an eigenvector of the operator 𝜎𝑦𝜏𝑦 with eigenvalue −1.  

The expectation value ⟨𝜎𝑦𝜏𝑦⟩ = −⟨𝑇2|𝑇2⟩ = −1. 

 Furthermore ⟨𝜎𝑥⟩ =0: 

  ⟨𝜎𝑥⟩ = ⟨𝑇2|𝜎𝑥|𝑇2⟩ =
1

2
(⟨𝑢𝑢| + ⟨𝑑𝑑|)(|𝑑𝑢⟩ + |𝑢𝑑⟩) =

1

2
(0 + 0 + 0 + 0) = 0. 

Similarly  

⟨𝜎𝑦⟩ = 0, and ⟨𝜎𝑧⟩ = 0. 

Then, e.g., 
 ⟨𝜎𝑥𝜏𝑥⟩ − ⟨𝜎𝑥⟩⟨𝜏𝑥⟩ = 1 
Consequently, we have perfect correlation when maximally correlated. 
|𝑇3⟩: 
 ⟨𝜎𝑧𝜏𝑧⟩: 

 𝜎𝑧𝜏𝑧|𝑇3⟩ =
1

√2
(|𝑢𝑢⟩ − |𝑑𝑑⟩) = |𝑇3⟩.  

We find |𝑇3⟩ , to be an eigenvector of the operator 𝜎𝑧𝜏𝑧 with eigenvalue +1. The expectation value ⟨𝜎𝑧𝜏𝑧⟩ =
⟨𝑇3|𝑇3⟩ = 1. 

⟨𝜎𝑥𝜏𝑥⟩:  𝜎𝑥𝜏𝑥|𝑇3⟩ =
1

√2
(|𝑑𝑑⟩ − |𝑢𝑢⟩) = −|𝑇3⟩; 

|𝑇3⟩, is an eigenvector of the operator 𝜎𝑥𝜏𝑥 with eigenvalue −1.  
The expectation value ⟨𝜎𝑥𝜏𝑥⟩ = −⟨𝑇3|𝑇3⟩ = −1. 

⟨𝜎𝑦𝜏𝑦⟩:  𝜎𝑦𝜏𝑦|𝑇3⟩ =
1

√2
(|𝑢𝑢⟩ − |𝑑𝑑⟩) = |𝑇3⟩.  

 |𝑇3⟩, is an eigenvector of the operator 𝜎𝑦𝜏𝑦 with eigenvalue +1.  

The expectation value ⟨𝜎𝑦𝜏𝑦⟩ = ⟨𝑇3|𝑇3⟩ = 1. 

Furthermore ⟨𝜎𝑥⟩ =0:  

 ⟨𝜎𝑥⟩ = ⟨𝑇3|𝜎𝑥|𝑇3⟩ =
1

2
(⟨𝑢𝑢| − ⟨𝑑𝑑|)(|𝑑𝑢⟩ − |𝑢𝑑⟩) =

1

2
(0 − 0 + 0 + 0) = 0. 

Similarly  

⟨𝜎𝑦⟩ = 0, and ⟨𝜎𝑧⟩ = 0. 

Then, e.g., 

 ⟨𝜎𝑦𝜏𝑦⟩ − ⟨𝜎𝑦⟩⟨𝜏𝑦⟩ = 1 

Consequently, we have perfect correlation when maximally correlated. 

 

Susskind paid attention to the measurement of the observable 𝜎 ∙ 𝜏 . The operator is used in 

the next exercise. On this page Susskind paid attention to commutation: ”The problem is 

that Bob cannot simultaneously measure the individual components of 𝜏, because they do 

not commute”. See the remark on page 176. 
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Exercise 6.9 The eigenvectors of the product operator and the entangled vectors 
Prove that the four vectors |𝑠𝑖𝑛𝑔⟩, |𝑇1⟩, |𝑇2⟩ , and |𝑇3⟩ are eigenvectors of 𝜎 ∙ 𝜏 . What are their eigenvalues? 
Most of the work has been done in Exercises 6.6, 6.7 and 6.8. 
We must complete the calculus for  |𝑠𝑖𝑛𝑔⟩. On page 177 and page 178 Susskind calculated 𝜎𝑧𝜏𝑧|𝑠𝑖𝑛𝑔⟩ =

−
1

√2
(|𝑢𝑑⟩ − |𝑑𝑢⟩) = −|𝑠𝑖𝑛𝑔⟩,  

and |𝑠𝑖𝑛𝑔⟩ , is an eigenvector of the operator 𝜎𝑧𝜏𝑧 with eigenvalue −1. 

𝜎𝑥𝜏𝑥|𝑠𝑖𝑛𝑔⟩ =
1

√2
(|𝑑𝑢⟩ − |𝑢𝑑⟩) =  −|𝑠𝑖𝑛𝑔⟩.  

So, |𝑠𝑖𝑛𝑔⟩, is an eigenvector of the operator 𝜎𝑥𝜏𝑥 wit eigenvalue −1. 
 The expectation value ⟨𝜎𝑧𝜏𝑧⟩ = −⟨𝑠𝑖𝑛𝑔|𝑠𝑖𝑛𝑔⟩ = −1, and the expectation value ⟨𝜎𝑥𝜏𝑥⟩ = −⟨𝑠𝑖𝑛𝑔|𝑠𝑖𝑛𝑔⟩ = −1. 

For 𝜎𝑦𝜏𝑦|𝑠𝑖𝑛𝑔⟩ =
1

√2
(|𝑑𝑢⟩ − |𝑢𝑑⟩) = −|𝑠𝑖𝑛𝑔⟩,  

and ⟨𝜎𝑦𝜏𝑦⟩ = −⟨𝑠𝑖𝑛𝑔|𝑠𝑖𝑛𝑔⟩ = −1.  

 |𝑠𝑖𝑛𝑔⟩, is an eigenvector of the operator 𝜎𝑦𝜏𝑦 with eigenvalue −1. 

1) Is |𝑠𝑖𝑛𝑔⟩, an eigenvector of the operator 𝜎 ∙ 𝜏  ? 
We know 𝜎 ∙ 𝜏 = 𝜎𝑥𝜏𝑥 +𝜎𝑦𝜏𝑦 + 𝜎𝑧𝜏𝑧 , (page 180).  

When we operate 𝜎 ∙ 𝜏   on |𝑠𝑖𝑛𝑔⟩, we have  
  (𝜎𝑥𝜏𝑥  +𝜎𝑦𝜏𝑦 + 𝜎𝑧𝜏𝑧)|𝑠𝑖𝑛𝑔⟩ = −3|𝑠𝑖𝑛𝑔⟩.  

So, 
|𝑠𝑖𝑛𝑔⟩,  is an eigenvector of  𝜎 . 𝜏   with eigenvalue −3. 
2) With the results of Exercises 6.7 and 6.8, it follows straightforward   |𝑇1⟩, |𝑇2⟩, and |𝑇3⟩ to be eigenvectors of 
𝜎 ∙ 𝜏 , with eigenvalues the same and equal to +1(= 1 + 1 − 1). 
Note: the eigenvalues of the components of 𝜎 ∙ 𝜏  vary with the triplets. See Exercise 6.8. 

 

Remark: On page 181 Susskind writes: “……., the singlet is an eigenvector, and the triplets 

are all eigenvectors with a different degenerate eigenvalue”. ‘Different degenerate 

eigenvalue’, what kind of animal is that? On page 64 Susskind writes: “……. This situation, 

where two different eigenvectors have the same eigenvalue, has a name: it’s called 

degeneracy”. On page 67 Susskind writes: “…. This typically happens when a system has 

degenerate states-distinct states that have the same eigenvalue”. So, the expression 

‘different degenerate eigenvalue’ is not clear to me. May be a typo? 
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Exercise 6.10 The energies and eigenvectors of two spins for a given Hamiltonian. 
A system of two spins has the Hamiltonian 𝑯 =

𝜔

2
𝜎 ∙ 𝜏   .  

(Note : Hamiltonian without Planck’s constant). 
What are the possible energies of the system, and what are the eigenvectors of the Hamiltonian? 
Suppose the system starts in the state |𝑢𝑢⟩. What is the state at any later time? Answer the same question 
for initial states of |𝑢𝑑⟩, |𝑑𝑢⟩, and |𝑑𝑑⟩. 
I follow the steps of the recipe for a Schrödinger ket, page 124, (See also Exercise 4.6): 

1) Derive,…., the Hamiltonian operator 𝑯 → 𝑯 =
𝜔

2
 𝜎 ∙ 𝜏 . 

2) Prepare an initial state |𝛹(0)⟩ : |𝑢𝑢⟩. 

3) Find the eigenvalues and eigenvectors of 𝑯 Schrödinger equation, 𝑯|𝐸𝑗⟩ = 𝐸𝑗|𝐸𝑗⟩.  

I can choose as eigenvectors the singlet and triplets. They form a complete set of orthonormal vectors in the 

four-dimensional vector space. The eigenvalues 𝐸𝑗  are −
3𝜔ℏ

2
 for |𝑠𝑖𝑛𝑔⟩  and 

𝜔ℏ

2
 for the triplets.  

I include here Planck’s constant ℏ since I consider the absence of ℏ in the Hamiltonian of this Exercise a 
printing error. 
Could we also have taken the vectors |𝑢𝑢⟩, |𝑢𝑑⟩, |𝑑𝑢⟩, and |𝑑𝑑⟩, as a basis? Do they also form a complete 
set of orthonormal vectors? They comprise the basis set for the four-dimensional vector space. In the note 
below I will pay attention to this question. I stay with the singlet and triplets being the eigenvectors of 𝜎 ∙ 𝜏 . 

4) Use the initial state-vector |𝛹(0)⟩, along with the eigenvectors |𝐸𝑗⟩ from step 3), to calculate the initial 

coefficient 𝛼𝑗(0) = ⟨𝐸𝑗|𝛹(0)⟩ = ⟨𝐸𝑗|𝑢𝑢⟩. 

𝛼1(0) = ⟨𝐸1|𝑢𝑢⟩ = ⟨𝑠𝑖𝑛𝑔|𝑢𝑢⟩ = 0, 
𝛼2(0) = ⟨𝐸2|𝑢𝑢⟩ = ⟨𝑇1|𝑢𝑢⟩ = 0,  

𝛼3(0) = ⟨𝐸3|𝑢𝑢⟩ = ⟨𝑇2|𝑢𝑢⟩ =
1

√2
 , and 

𝛼4(0) = ⟨𝐸4|𝑢𝑢⟩ = ⟨𝑇3|𝑢𝑢⟩ =
1

√2
.    

To find these coefficient use has been made of the expressions for the singlet and triplets given in the above 
exercises and the Kronecker delta. 

5) Rewrite |𝛹(0)⟩ in terms of the four eigenvectors |𝐸𝑗⟩, and the initial coefficients 𝛼𝑗(0) :  ǀ𝛹(0)⟩ =

∑ 𝛼𝑗(0)|𝐸𝑗⟩𝑗 ,  

6) In the above equation, replace 𝛼𝑗(0) with 𝛼𝑗(𝑡) to capture its time-dependence. As a result |𝛹(𝑡)⟩:  

 |𝛹(𝑡)⟩ = ∑ 𝛼𝑗(𝑡)|𝐸𝑗⟩ 𝑗 . 

7) Using Eq. (4.30), replace 𝛼𝑗(𝑡) with 𝛼𝑗(0)𝑒
−𝑖𝐸𝑗𝑡/ħ : 

 |𝛹(𝑡)⟩ = ∑ 𝛼𝑗(0)𝑒
−
𝑖𝐸𝑗𝑡

ℏ |𝐸𝑗⟩.  𝑗  

8) With the above results for 𝛼𝑗(0) and eigenvalues 𝐸𝑗  , −
3𝜔ℏ

2
 and 

𝜔ℏ

2
 : 

 |𝛹(𝑡)⟩ =
1

√2
𝑒−

𝑖𝜔𝑡

2 (|𝑇2⟩ + |𝑇3⟩) = 𝑒
−
𝑖𝜔𝑡

2 (ǀ𝑢𝑢⟩).  

In this expression the eigenvalue  −
3𝜔ℏ

2
  did not contribute. This eigenvalue will contribute for the initial 

states |𝑢𝑑⟩ and |𝑑𝑢⟩. 
Now, the same exercise with |𝑢𝑑⟩ as initial state. The singlet and triplets are again used as eigenvectors and 
start with step 4) of the recipe. 

4) Use the initial state-vector |𝛹(0)⟩, along with the eigenvectors |𝐸𝑗⟩ from step 3), to calculate the initial 

coefficient 𝛼𝑗(0) = ⟨𝐸𝑗|𝛹(0)⟩ = ⟨𝐸𝑗|𝑢𝑑⟩. 

𝛼1(0) = ⟨𝐸1|𝑢𝑑⟩ = ⟨𝑠𝑖𝑛𝑔|𝑢𝑑⟩ =
1

√2
,  

𝛼2(0) = ⟨𝐸2|𝑢𝑑⟩ = ⟨𝑇1|𝑢𝑑⟩ =
1

√2
 , 

𝛼3(0) = ⟨𝐸3|𝑢𝑑⟩ = ⟨𝑇2|𝑢𝑑⟩ = 0 , and 
𝛼4(0) = ⟨𝐸4|𝑢𝑑⟩ = ⟨𝑇3|𝑢𝑑⟩ = 0. 
To find these coefficient use has been made of the expressions for the singlet and triplets given in the above 
exercises and the Kronecker delta. 

5) Rewrite |𝛹(0)⟩ in terms of the four eigenvectors |𝐸𝑗⟩, and the initial coefficients 𝛼𝑗(0) :  ǀ𝛹(0)⟩ =

∑ 𝛼𝑗(0)|𝐸𝑗⟩𝑗 ,  

6) In the above equation, replace 𝛼𝑗(0) with 𝛼𝑗(𝑡) to capture its time-dependence. As a  

result |𝛹(𝑡)⟩:  |𝛹(𝑡)⟩ = ∑ 𝛼𝑗(𝑡)|𝐸𝑗⟩ 𝑗 . 

7) Using Eq. (4.30), replace 𝛼𝑗(𝑡) with 𝛼𝑗(0)𝑒
−𝑖𝐸𝑗𝑡/ℏ : 
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 |𝛹(𝑡)⟩ = ∑ 𝛼𝑗(0)𝑒
−
𝑖𝐸𝑗𝑡

ℏ |𝐸𝑗⟩.  𝑗  

8) With the above results for 𝛼𝑗(0) and eigenvalues 𝐸𝑗  , −
3𝜔ℏ

2
 and 

𝜔ℏ

2
 : 

 ǀ𝛹(𝑡)⟩ =
1

√2
[𝑒
3𝑖𝜔𝑡

2 |𝑠𝑖𝑛𝑔⟩ + 𝑒−
𝑖𝜔𝑡

2 |𝑇1⟩] =
1

2
[𝑒

3𝑖𝜔𝑡

2 (|𝑢𝑑⟩ − |𝑑𝑢⟩) + 𝑒−
𝑖𝜔𝑡

2 (|𝑢𝑑⟩ + |𝑑𝑢⟩)]. 

 ǀ𝛹(𝑡)⟩ =
1

2
𝑒−

𝑖𝜔𝑡

2 ((𝑒2𝑖𝜔𝑡 + 1)ǀ𝑢𝑑⟩ + (1 − 𝑒2𝑖𝜔𝑡)|𝑑𝑢⟩).  

If we calculate the probability to find the result for the singlet, we find : 
1

2
 , independent of time.  

Now at time 𝑡 we have a mixed state.  
For the initial state  |𝑑𝑢⟩ we again find a mixed state at time 𝑡: 

ǀ𝛹(𝑡)⟩ =
1

2
𝑒−

𝑖𝜔𝑡

2 ((𝑒2𝑖𝜔𝑡 + 1)ǀ𝑑𝑢⟩ + (1 − 𝑒2𝑖𝜔𝑡)|𝑢𝑑⟩). 

For the initial state  |𝑑𝑑⟩ we find 

 |𝛹(𝑡)⟩ =
1

√2
𝑒−

𝑖𝜔𝑡

2 (|𝑇2⟩ − |𝑇3⟩) = 𝑒
−
𝑖𝜔𝑡

2 (|𝑑𝑑⟩). 

 

 

 

Note:  

𝜎 ∙ 𝜏 ǀ𝑢𝑢⟩ = |𝑢𝑢⟩,  

𝜎 ∙ 𝜏 ǀ𝑑𝑑⟩ = |𝑑𝑑⟩, 

𝜎 ∙ 𝜏 |𝑢𝑑⟩ = −|𝑢𝑑⟩ + 2|𝑑𝑢⟩,  

and 

𝜎 ∙ 𝜏 |𝑑𝑢⟩ = −|𝑑𝑢⟩ + 2|𝑢𝑑⟩. 

|𝑢𝑢⟩, |𝑑𝑑⟩, |𝑢𝑑⟩, and |𝑑𝑢⟩ do not constitute a complete set of eigenvectors since |𝑢𝑑⟩ and 

|𝑑𝑢⟩ are no eigenvectors of 𝜎 ∙ 𝜏  . 

𝜎 ∙ 𝜏 (|𝑢𝑑⟩ + |𝑑𝑢⟩) = |𝑢𝑑⟩ + |𝑑𝑢⟩ = √2|𝑇1⟩,  

and |𝑢𝑑⟩ + |𝑑𝑢⟩  is an eigenvector of 𝜎 ∙ 𝜏 .  

Likewise,  |𝑢𝑑⟩ − |𝑑𝑢⟩  is an eigenvector of 𝜎 . 𝜏 . 

Then, 

  |𝑢𝑢⟩, |𝑑𝑑⟩, (|𝑢𝑑⟩ + |𝑑𝑢⟩)  and (|𝑢𝑑⟩ − |𝑑𝑢⟩) constitute a complete set of eigenvectors of 

the observable 𝜎 ∙ 𝜏  . 

The observable 𝜎 ∙ 𝜏  is written “as the ordinary dot product of the vector operators 𝜎  and 𝜏 : 

𝜎 ∙ 𝜏 = 𝜎𝑥𝜏𝑥 +𝜎𝑦𝜏𝑦 + 𝜎𝑧𝜏𝑧(page 180)”. You could be tempted to multiply the Pauli matrices. 

However, then a 2 × 2 matrix is found: (
3 0
0 3

). With the combined states we have a 4 × 4 

vector space and by applying this 2 × 2 matrix you are lost. Lost in temptation, sort of. 

𝜎𝑥𝜏𝑥 = 𝜎𝑥⊗ 𝜏𝑥 = (

0  0  0  1
0  0  1  0
0  1  0  0
1  0  0  0

) ,  (use has been made of the tensor product ⊗ as explained 

in Lecture 7 and illustrated in the section of the elegance of tensor products in my notes 

above page 40). 

 

𝜎𝑦𝜏𝑦 = 𝜎𝑦⊗ 𝜏𝑦 = (

0  0  0  − 1
0  0  1       0
0  1  0       0
−1  0  0       0   

) and 
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𝜎𝑧𝜏𝑧 = 𝜎𝑧⊗ 𝜏𝑧 = (

1    0     0  0
0 − 1   0  0
0    0 − 1  0
0    0     0  1

).  

Consequently  𝜎 ∙ 𝜏  : 

𝜎 ∙ 𝜏 = 𝜎𝑥𝜏𝑥 +𝜎𝑦𝜏𝑦 + 𝜎𝑧𝜏𝑧= (

1    0     0  0
0 − 1   2  0
0    2 − 1  0
0    0     0  1

).  

 

Lecture 7. More on entanglement. 
 

This lecture elaborates further on entanglement by using tensor product matrices. A new 

operator, the outer product is introduced along with the density matrix. 

7.1 Mathematical Interlude: Tensor Products in Component Form 

7.1.1 Building Tensor Product Matrices from Basic Principles 

Lecture 3.1.1 Rehearsal. 

Eqs. (3.1)-(3.4): 

 ∑ ⟨𝑘|𝑴|𝑗⟩𝑗 𝛼𝑗 = ∑ 𝛽𝑗⟨𝑘|𝑗⟩𝑗 , 

 𝑴 = (

𝑚11 𝑚12 𝑚13
𝑚21 𝑚22 𝑚23
𝑚31 𝑚23 𝑚33

), 

 ∑ ⟨𝑘|𝑴|𝑗⟩𝑗 𝛼𝑗 = ∑ 𝑚𝑘𝑗𝑗 𝛼𝑗 = 𝛽𝑘 → 𝑚𝑘𝑗 = ⟨𝑘|𝑴|𝑗⟩, 

where 𝑚𝑘𝑗 are called the matrix elements, 

and 

 (

𝑚11 𝑚12 𝑚13
𝑚21 𝑚22 𝑚23
𝑚31 𝑚23 𝑚33

)(

𝛼1
𝛼2
𝛼3
) = (

𝛽1
𝛽2
𝛽3

). 

 

Susskind illustrated the tensor product matrix with the example 𝜎𝑧⊗ 𝐼. 

In Eq. (7.2), the components of the two-spin vector are 𝑢 and 𝑑. Then, with the 4 , 

combined, basis vectors (see page 185) a 4 × 4 matrix is constructed.  Use has been made of             

⟨𝑎𝑏|𝑎′𝑏′⟩ = 𝛿𝑎𝑎′𝛿𝑏𝑏′ , to obtain the matrix Eq.(7.4). 

Page 187, with Eqs. (7.4) and (7.5): 

 𝜎𝑧⊗ 𝐼|𝑑𝑢⟩ = (

1 0
0 1

0   0
0   0

0 0
0 0

−1 0
0 −1

)(

0
0
1
0

) = (

0
0
−1
0

) = −(

0
0
1
0

) = −|𝑑𝑢⟩ . 

7.1.2 Building Tensor Product Matrices from Component Matrices 

In Eqs. (7.6) and (7.7), Susskind presented the recipe for tensor products. 

On the pages 189-191, Susskind presented various examples of tensor products. 

To summarize: “…..it is about matrix representation of abstract operators and state-vectors 

that replicates their known behavior.” 
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Exercise 7.1: Operate Bob’s tensor on the basis vectors 
Write the tensor product 𝐼 ⊗ 𝜏𝑥 as a matrix and apply that matrix to each of the |𝑢𝑢⟩, |𝑢𝑑⟩, |𝑑𝑢⟩, and |𝑑𝑑⟩ 
column vectors. Show that Alice’s half of the state vector is unchanged in each case. Recall that 𝐼 is the 2 × 2 
unit matrix. 

𝐼 ⊗ 𝜏𝑥 = (
1 0
0 1

)⊗ (
0 1
1 0

) = (

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

) , and 

|𝑢𝑢⟩ = (
1
0
) ⊗ (

1
0
) = (

1
0
0
0

).  

 

Now 𝐼 ⊗ 𝜏𝑥|𝑢𝑢⟩ = (

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

)(

1
0
0
0

) = (

0
1
0
0

) = |𝑢𝑑⟩, page 189 Eqs.(7.9). 

 

Then 𝐼 ⊗ 𝜏𝑥|𝑢𝑑⟩ = (

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

)(

0
1
0
0

) = (

1
0
0
0

) = |𝑢𝑢⟩. 

 
Along the same lines we find 𝐼 ⊗ 𝜏𝑥|𝑑𝑢⟩ = |𝑑𝑑⟩ and 𝐼 ⊗ 𝜏𝑥|𝑑𝑑⟩ = |𝑑𝑢⟩. This shows that Alice’s half of the 
state vector is unchanged in each case.  
Do not be confused by this statement: 

 𝐼 ⊗ 𝜎𝑥 = (
1 0
0 1

)⊗ (
0 1
1 0

) = (

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

), giving the same results as obtained with 𝐼 ⊗ 𝜏𝑥. 

 

 

  

Exercise 7.2 Matrix element of the tensor product of both spin operators 
Calculate the matrix elements of 𝜎𝑧⊗ 𝜏𝑥  by forming inner products as we did in Eq. 7.2. 

(

 

⟨𝑢𝑢|𝜎𝑧𝜏𝑥|𝑢𝑢⟩  ⟨𝑢𝑢|𝜎𝑧𝜏𝑥|𝑢𝑑⟩  ⟨𝑢𝑢|𝜎𝑧𝜏𝑥|𝑑𝑢⟩  ⟨𝑢𝑢|𝜎𝑧𝜏𝑥|𝑑𝑑⟩

⟨𝑢𝑑|𝜎𝑧𝜏𝑥|𝑢𝑢⟩  ⟨𝑢𝑑|𝜎𝑧𝜏𝑥|𝑢𝑑⟩  ⟨𝑢𝑑|𝜎𝑧𝜏𝑥|𝑑𝑢⟩  ⟨𝑢𝑑|𝜎𝑧𝜏𝑥|𝑑𝑑⟩

⟨𝑑𝑢|𝜎𝑧𝜏𝑥|𝑢𝑢⟩  ⟨𝑑𝑢|𝜎𝑧𝜏𝑥|𝑢𝑑⟩  ⟨𝑑𝑢|𝜎𝑧𝜏𝑥|𝑑𝑢⟩  ⟨𝑑𝑢|𝜎𝑧𝜏𝑥|𝑑𝑑⟩

⟨𝑑𝑑|𝜎𝑧𝜏𝑥|𝑢𝑢⟩  ⟨𝑑𝑑|𝜎𝑧𝜏𝑥|𝑢𝑑⟩  ⟨𝑑𝑑|𝜎𝑧𝜏𝑥|𝑑𝑢⟩  ⟨𝑑𝑑|𝜎𝑧𝜏𝑥|𝑑𝑑⟩)

 . 

Up to learning about the tensor product, we assume 𝜎𝑧 to operate on the leftmost (that is Alice’s) state-label 
(Susskind) and 𝜏𝑥  on the rightmost (that is Bob’s) state-label. That assumption is still correct. However, now 
we know how to construct the matrix 𝜎𝑧𝜏𝑥   and the combined states |𝑢𝑢⟩, etc, Eqs.(7.2) and (7.5), resulting 
from the tensor product. Furthermore, using the fact that these states are orthonormal or, and that is the 
same, make use of the Kronecker delta for combined states, ⟨𝑎𝑏|𝑎′𝑏′⟩ = 𝛿𝑎𝑎′𝛿𝑏𝑏′ the above matrix 
becomes: 

(

0  1     0     0
1  0     0     0
0  0     0 − 1
0  0 − 1     0

) = 𝜎𝑧⊗ 𝜏𝑥.  
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Exercise 7.3 More on tensor products 
a) Rewrite Eq. (7.10), (𝐴 ⊗ 𝐵)(𝑎 ⊗ 𝑏) = (𝐴𝑎 ⊗ 𝐵𝑏), in component form, replacing the symbols 𝐴, 𝐵, 𝑎, 
and 𝑏 with the matrices and column vectors of Eqs. (7.7) and (7.8). 
A bit tedious indeed! 

We have 𝐴 = (
𝐴11 𝐴12
𝐴21 𝐴22

), 𝐵 = (
𝐵11 𝐵12
𝐵21 𝐵22

) , 𝑎 = (
𝑎11
𝑎21
) and 𝑏 = (

𝑏11
𝑏21
). 

𝐴⊗ 𝐵 equals Eq. (7.7) and 𝑎 ⊗ 𝑏 equals Eq. (7.8).  

 𝐴⊗ 𝐵 = (

𝐴11𝐵11 𝐴11𝐵12
𝐴11𝐵21 𝐴11𝐵22

𝐴12𝐵11 𝐴12𝐵12
𝐴12𝐵21 𝐴12𝐵22

𝐴21𝐵11 𝐴21𝐵12
𝐴21𝐵21 𝐴21𝐵22

𝐴22𝐵11 𝐴22𝐵12
𝐴22𝐵21 𝐴22𝐵22

), 

and 

 𝑎 ⊗ 𝑏 = (

𝑎11𝑏11
𝑎11𝑏21
𝑎21𝑏11
𝑎21𝑏21

). 

  
The left-hand side of Eq. (7.10) is a matrix multiplied into a column vector producing a new column vector or 
a 4 × 1 matrix. 
b) Perform the matrix multiplications 𝐴𝑎 and 𝐵𝑏 on the right-hand side of Eq. (7.10) .  

𝐴𝑎 is a 2 × 1 matrix: 𝐴𝑎 = (
𝐴11 𝐴12
𝐴21 𝐴22

) (
𝑎11
𝑎21
) = (

𝐴11𝑎11 + 𝐴12𝑎21
𝐴21𝑎11 + 𝐴22𝑎21

).  

𝐵𝑏 is a 2 × 1 matrix: 𝐵𝑏 = (
𝐵11 𝐵12
𝐵21 𝐵22

) (
𝑏11
𝑏21
) = (

𝐵11𝑏11 + 𝐵12𝑏21
𝐵21𝑏11 + 𝐵22𝑏21

).   

Tensor multiplications of these 2 × 1 matrices produces a 4 × 1 matrix. 

 𝐴𝑎 ⊗ 𝐵𝑏 =

(

 

[𝐴11𝑎11 + 𝐴12𝑎21] ∙ [𝐵11𝑏11 + 𝐵12𝑏21]

[𝐴11𝑎11 + 𝐴12𝑎21] ∙ [𝐵21𝑏11 + 𝐵22𝑏21]

[𝐴21𝑎11 + 𝐴22𝑎21] ∙ [𝐵11𝑏11 + 𝐵12𝑏21]

[𝐴21𝑎11 + 𝐴22𝑎21] ∙ [𝐵21𝑏11 + 𝐵22𝑏21])

  

 
c) Expand all three Kronecker products, Eqs.(7.6) and (7.7), the matrix version of the tensor products in 
Eq.(7.10). 
We have all the ingredients for expanding 
 (𝐴 ⊗ 𝐵)(𝑎 ⊗ 𝑏) = (𝐴𝑎 ⊗ 𝐵𝑏) 
On the left-hand side we find a 4 × 1 matrix as we do on the right-hand side: 

 (𝐴 ⊗ 𝐵)(𝑎 ⊗ 𝑏) = (

𝐴11𝐵11𝑎11𝑏11 + 𝐴11𝐵12𝑎11𝑏21 + 𝐴12𝐵11𝑎21𝑏11 + 𝐴12𝐵12𝑎21𝑏21
𝐴11𝐵21𝑎11𝑏11 + 𝐴11𝐵22𝑎11𝑏21 + 𝐴12𝐵21𝑎21𝑏11 + 𝐴12𝐵22𝑎21𝑏21
𝐴21𝐵11𝑎11𝑏11 + 𝐴21𝐵12𝑎11𝑏21 + 𝐴22𝐵11𝑎21𝑏11 + 𝐴22𝐵12𝑎21𝑏21
𝐴21𝐵21𝑎11𝑏11 + 𝐴21𝐵22𝑎11𝑏21 + 𝐴22𝐵21𝑎21𝑏11 + 𝐴22𝐵22𝑎21𝑏21

), 

and  

 𝐴𝑎 ⊗ 𝐵𝑏 = (

𝐴11𝐵11𝑎11𝑏11 + 𝐴11𝐵12𝑎11𝑏21 + 𝐴12𝐵11𝑎21𝑏11 + 𝐴12𝐵12𝑎21𝑏21
𝐴11𝐵21𝑎11𝑏11 + 𝐴11𝐵22𝑎11𝑏21 + 𝐴12𝐵21𝑎21𝑏11 + 𝐴12𝐵22𝑎21𝑏21
𝐴21𝐵11𝑎11𝑏11 + 𝐴21𝐵12𝑎11𝑏21 + 𝐴22𝐵11𝑎21𝑏11 + 𝐴22𝐵12𝑎21𝑏21
𝐴21𝐵21𝑎11𝑏11 + 𝐴21𝐵22𝑎11𝑏21 + 𝐴22𝐵21𝑎21𝑏11 + 𝐴22𝐵22𝑎21𝑏21

). 

 
d)Verify the row and column sizes of each Kronecker delta product of Eq. (7.10): 

• 𝐴⊗ 𝐵: a tensor product of two 2 × 2 matrices produces a 4 × 4 matrix represented by Eq. (7.7). 

• 𝑎 ⊗ 𝑏: a tensor product of two 2 × 1 matrices gives a 4 × 1 matrix represented by Eq. (7.8). 

• 𝐴𝑎 ⊗ 𝐵𝑏: a tensor product of two 2 × 1 matrices as explained above in b). This product results in a 
4 × 1 matrix. 
Remark:  “𝐴𝑎 ⊗ 𝐵𝑏: 4 × 4”. A printing error, see e) and f). 

e) Perform the matrix multiplication on the left-hand side in Eq. (7.10), resulting in a 4 × 1 column vector. 
Each row should be the sum of four separate terms. This is shown under c). 
f) Finally, verify that the resulting column vector on the left hand and right sides are identical. This is shown 
under c). 
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Example tensor product Interlude:  

Now, before to continue with Lecture 7, let us return to Exercise 6.10 and apply the above  

toolkit of tensor algebra to find the eigenvalues of the operator  𝜎 ∙ 𝜏 = 𝜎𝑥𝜏𝑥 +𝜎𝑦𝜏𝑦 + 𝜎𝑧𝜏𝑧. 

Then we must realize that we construct the tensor representation of the right-hand side of 

the expression for 𝜎 ∙ 𝜏 . Using the 2 × 2 Pauli matrices we have: 

(

1     0     0  0
0 − 1     2  0
0     2 − 1  0
0     0     0  1

),  

a 4 × 4 matrix of which the eigenvalues 𝜆𝑖 are found from the determinant leading to the 

polynomial:  (1 − 𝜆)2((1 + 𝜆)2 − 4) = 0, with three roots:  

 𝜆𝑖 = 1(degeneracy) and one root 𝜆𝑖 = −3.  

In accordance with the eigenvalues of the singlet and triplets. The difference between the 

eigenvalues of the singlet and triplets and of the other orthonormal basis |𝑢𝑢⟩, ǀ𝑢𝑑⟩, |𝑑𝑢⟩,  

and|𝑑𝑑⟩, is:  

the latter basis being the orthonormal basis for the four-dimensional space, does not form a 

complete set of eigenvectors of the operator 𝜎 ∙ 𝜏  as mentioned before. In the Exercise 6.10 

we presumed the singlet and the triplet to be the eigenvectors of 𝜎 ∙ 𝜏  and it worked. Now, 

given the above matrix and its eigenvalues, can we find the eigenvectors in a general way? 

Let’s start with the eigenvalue −3 and assume the components of the column vector 

representation of the eigenvector to be 𝑎, 𝑏, 𝑐 and 𝑑. Then: 

(

1     0     0  0
0 − 1     2  0
0     2 − 1  0
0     0     0  1

)(

𝑎
𝑏
𝑐
𝑑

) = −3(

𝑎
𝑏
𝑐
𝑑

),  

applying matrix vector multiplication and equating: 

𝑎 = −3𝑎, → 𝑎 = 0, 𝑑 = −3𝑑,→ 𝑑 = 0, and 𝑏 = −𝑐.  

With normalization,    𝑏𝑏∗ + 𝑐𝑐∗ = 1, 𝑏 =
1

√2
, and  𝑐 = −

1

√2
.  

Now, the eigenvector is 

 
1

√2
(

0
1
−1
0

).  

Look on page 189, Eq. (7.9) and we find that this eigenvector is represented by 
1

√2
(|𝑢𝑑⟩ − |𝑑𝑢⟩) = |𝑠𝑖𝑛𝑔⟩.  

What about the three eigenvectors with eigenvalue +1? 

(

1     0     0  0
0 − 1     2  0
0     2 − 1  0
0     0     0  1

)(

𝑎
𝑏
𝑐
𝑑

) = (

𝑎
𝑏
𝑐
𝑑

),  

applying matrix vector multiplication and equating:𝑎 = 𝑎, 𝑑 = 𝑑, and 𝑏 = 𝑐.  

The eigenvectors are (

𝑎
𝑏
𝑏
𝑑

) and the normalization condition is: 

𝑎∗𝑎 + 2𝑏∗𝑏 + 𝑑∗𝑑 = 1.  
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Furthermore, we have the column vector representations of the basis vectors given on pages 

189 and 190, Eq.(7.9).  

Starting with a simple eigenvector where 𝑎 = 0 and 𝑑 = 0, and 𝑏 is real, we find for the first 

eigenvector with eigenvalue +1 the triplet: 

 |𝑇1⟩ =
1

√2
(|𝑢𝑑⟩ + |𝑑𝑢⟩).  

The other two are found by 𝑏 = 0 and 𝑎 = 𝑑, and 𝑏 = 0 and 𝑎 = −𝑑. This produces the 

eigenvectors |𝑇2⟩ and |𝑇3⟩.  

By the way, set 𝑎 = 1, and 𝑏 = 𝑐 = 𝑑 = 0 and you have |𝑢𝑢⟩ . Furthermore, set 𝑑 = 1 , and 

 𝑎 = 𝑏 = 𝑑 = 0 giving |𝑑𝑑⟩. In Fitzpatrick (Undergraduate course) |𝑢𝑢⟩ and |𝑑𝑑⟩ with |𝑇1⟩ 

are the three triplets. This is no contradiction, since adding and subtracting |𝑢𝑢⟩ and |𝑑𝑑⟩ 

respectively, with normalization, give us |𝑇2⟩ and|𝑇3⟩. 

In Noordzij, some additional thoughts are presented on the construction of the triplets. 

End of tensor product example. 

7.2 Mathematical Interlude: Outer Product 
In this Lecture Susskind introduced the outer product  |𝜓⟩⟨𝜙ǀ  as a new linear operator. 

On page 34 we encountered something like an outer product: |𝑖⟩⟨𝑖|. 

Dirac(page 25) proved the outer product to be a linear operator.  

 

At the top of page 194: “….we take the inner product of ⟨𝜙| with |𝐴⟩ (the result is a complex 

number) and multiply it by the ket |𝜓⟩.” → And a new ket is obtained. So, the outer product 

is an operator. 

On page 194 Susskind gives some properties of projection operators-a special form of outer 

product- that “can easily be proved”( Susskind uses |𝜓⟩, I prefer |𝛹⟩): 

Projection operators are Hermitian. 

 

Remark: Dirac proved on page 28 the complex conjugate of the outer product to be equal to 

the outer product. Dirac: “Multiplying |𝐴⟩⟨𝐵| into a general bra ⟨𝑃| we get ⟨𝑃|𝐴⟩⟨𝐵| , whose 

conjugate imaginary ket is (⟨𝑃|𝐴⟩⟨𝐵|)
∗
= ⟨𝑃|𝐴⟩∗|𝐵⟩ = |𝐵⟩⟨𝐴|𝑃⟩,  and  

 (⟨𝑃|𝐴⟩⟨𝐵|)
∗
= |𝑃⟩(|𝐴⟩⟨𝐵|)

∗
= |𝐵⟩⟨𝐴|𝑃⟩. This gives for any |𝑃⟩  : (|𝐴⟩⟨𝐵|)

∗
= |𝐵⟩⟨𝐴| . 

Well , to be Hermitian, the projection operator must be a matrix. With a column vector 

representation of the ket in the projection operator we find a matrix. Then, with the proof of 

Dirac equating 𝐴 = 𝐵 = 𝜓 and the matrix representation of the outer product it 

appears:(|𝜓⟩⟨𝜓|)ϯ = |𝜓⟩⟨𝜓|. 

 

Properties of projection operators: 

• Projection operators are Hermitian (See Dirac, page 28). 

Remark: On page 28, Eq. (7) Dirac proved the conjugate imaginary of |𝐴⟩⟨𝐵|, 

 |𝐴⟩⟨𝐵|̅̅ ̅̅ ̅̅ ̅̅  , to be equal to |𝐵⟩⟨𝐴|. See my Remark above: (|𝜓⟩⟨𝜓|)ϯ = |𝜓⟩⟨𝜓|. 

• Any vector ǀ𝜙⟩ orthogonal to ǀ𝜓⟩ is an eigenvector of |𝜓⟩⟨𝜓| with eigenvalue zero:          

|𝜓⟩⟨𝜓| |𝜙⟩ = |𝜓⟩ ⟨𝜙|𝜓⟩ = 0ǀ𝜓⟩. 

• The vector ǀ𝜓⟩ is an eigenvector of its projection operator with eigenvalue 1: 

|𝜓⟩⟨𝜓|  𝜓⟩ = |𝜓⟩⟨𝜓|𝜓⟩ = |𝜓⟩, since |𝜓⟩ is normalized; ⟨𝜓|𝜓⟩ = 1. 
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• The square of a projection operator is the same as the projection operator itself: 

(|𝜓⟩⟨𝜓|)2 = |𝜓⟩⟨𝜓| |𝜓⟩⟨𝜓| = |𝜓⟩⟨𝜓|. 

• The trace of an operator 𝑳 is, in matrix representation,  𝑇𝑟 𝑳 = ∑ ⟨𝑖|𝑳|𝑖⟩𝑖 , which is 

just the sum of 𝑳’s diagonal matrix elements.  

The trace of a projection operator is 1: 

 𝑇𝑟|𝜓⟩⟨𝜓| = ∑ ⟨𝑖|𝜓⟩⟨𝜓|𝑖⟩𝑖 , the sum of the diagonal matrix elements. 

 𝑇𝑟|𝜓⟩⟨𝜓| = ∑ ⟨𝑖|𝜓⟩⟨𝜓|𝑖⟩𝑖 = ∑ ⟨𝜓|𝑖⟩⟨𝑖|𝜓⟩𝑖 = ⟨𝜓|𝜓⟩ =1, since |𝜓⟩ is normalized. Or, 

since the projection operator is Hermitian and can be diagonalized and there is only 

one eigenvector with unit eigenvalue(third bullet point above), the trace is the sum 

of its eigenvalues. 

• Add all the projection operators for a basis system and, we find ∑ |𝑖⟩⟨𝑖| = 𝑰𝑖 . 

Remember Lecture 1.95, page 34.  

Consider the vector |𝐴⟩ written in the basis form 

|𝐴⟩ = ∑ 𝛼𝑖|𝑖⟩𝑖 ,  

rewritten in the elegant form, 𝛼𝑖 = ⟨𝑖|𝐴⟩, 

 |𝐴⟩ = ∑ |𝑖⟩⟨𝑖|𝐴⟩𝑖 .  

Then, 

|𝐴⟩ = (∑ |𝑖⟩⟨𝑖|)|𝐴⟩𝑖 . 

So, ∑ |𝑖⟩⟨𝑖| = 𝑰𝑖 . 

Or : ∑ |𝑖⟩⟨𝑖| ∑ 𝛼𝑘𝑘𝑖 |𝑘⟩ = ∑ |𝑖⟩∑ 𝛼𝑘⟨𝑖|𝑘⟩ = ∑ |𝑖⟩𝛼𝑖 = |𝐴⟩𝑖𝑘𝑖 , and consequently 

∑ |𝑖⟩⟨𝑖| = 𝑰𝑖 .  

Remember: ∑ 𝛼𝑘⟨𝑖|𝑘⟩ = 𝛼𝑖𝑘 , where use has been made of 𝛿𝑖𝑘 = ⟨𝑖|𝑘⟩. 

See also my notes on section 3.1.5. 

The proof can be found in Dirac page 63. 

At the end of this section, Susskind presented Eq.(7.12), and proved a theorem about 

projection operators, a special case of the outer product, and expectation values, 

Eq.(7.12): ⟨𝜓|𝑳|𝜓⟩ = 𝑇𝑟|𝜓⟩⟨𝜓|𝑳. 

There is more: 

7.2.1 The projection operator and the Gram-Schmidt Procedure 

 

In Lecture 3.1.6 the Gram-Schmidt Procedure is presented and explained. Here, the 

projection operator (outer product) comes into play. 

“Sometimes we encounter a set of linearly independent eigen vectors that do not form an 

orthonormal set.”, page 67. 

So, we have two kets, normalized: 

 |𝛼1⟩ and |𝛼2⟩ , with ⟨𝛼1|𝛼2⟩ ≠ 0 . 

With the projection operator, |𝛼1⟩⟨𝛼1|, construct a new ket: 

 |𝛼3⟩ = |𝛼2⟩ − |𝛼1⟩⟨𝛼1|𝛼2⟩ . 

Then, 

 ⟨𝛼1|𝛼3⟩ = ⟨𝛼1|𝛼2⟩ − ⟨𝛼1|𝛼1⟩⟨𝛼1|𝛼2⟩ = ⟨𝛼1|𝛼2⟩ − ⟨𝛼1|𝛼2⟩ = 0, 

where use has been made of 

 ⟨𝛼1|𝛼1⟩ = 1 . 

The new ket |𝛼3⟩ presents an orthogonal set with  |𝛼1⟩. However, a orthonormal basis set is 
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what we are looking for. 

Let us introduce a number 𝑎 ⟹ |𝑎|2⟨𝛼3|𝛼3⟩ = 1. 

The new ket |𝛼4⟩ = 𝑎|𝛼3⟩, with  |𝛼1⟩, is the new basis set { |𝛼1⟩, |𝛼4⟩}. 

What about 𝑎? With  |𝛼3⟩ = |𝛼2⟩ − |𝛼1⟩⟨𝛼1|𝛼2⟩: 

 𝑎 |𝛼3⟩ = 𝑎|𝛼2⟩ − 𝑎|𝛼1⟩⟨𝛼1|𝛼2⟩ ⟹ 

 ⟹ [𝑎∗⟨𝛼2| − 𝑎
∗⟨𝛼1|⟨𝛼1|𝛼2⟩

∗][ 𝑎|𝛼2⟩ − 𝑎|𝛼1⟩⟨𝛼1|𝛼2⟩] = 

 |𝑎|2[⟨𝛼2|𝛼2⟩ − ⟨𝛼1|𝛼2⟩⟨𝛼1|𝛼2⟩
∗ − ⟨𝛼2|𝛼1⟩⟨𝛼1|𝛼2⟩ + ⟨𝛼1|𝛼1⟩⟨𝛼1|𝛼2⟩⟨𝛼1|𝛼2⟩

∗] = 

 = |𝑎|2[1 − |⟨𝛼1|𝛼2⟩|
2]= 1 ⟹ 

 ⟹ 𝑎 =
𝑒−𝑖𝜙

[1−|⟨𝛼1|𝛼2⟩|2]1/2
 , 

where 𝜙, represents phase ambiguity and  ⟨𝛼2|𝛼1⟩⟨𝛼1|𝛼2⟩ = ⟨𝛼1|𝛼2⟩
∗⟨𝛼1|𝛼2⟩. 

Neglecting this ambiguity, 

 |𝛼4⟩ = 𝑎|𝛼3⟩ =
|𝛼2⟩−|𝛼1⟩⟨𝛼1|𝛼2⟩
[1−−|⟨α1|α2⟩|2]1/2

 .  

The new basis set, { |𝛼1⟩, |𝛼4⟩}, has been created. 

As an illustration, I visualized the new basis set in the following Figure: 

 

 

Gram-Schmidt Procedure and projection operator (See Figure 3.1 page 68, Susskind) 

7.2.2 The Projection Operator and the Space of States 

In the foregoing section we developed a set of basis vectors, { |𝛼1⟩, |𝛼4⟩},  for two-

dimensional vector space. This is a complete set. 

Now, let us operate a matrix 𝐴 on this two-dimensional vector space. 𝐴 has the 

aforementioned basis vectors as eigenvectors. The eigenvalues are denoted 𝛼1, and 𝛼4. 

What are the elements of matrix 𝐴? 

We have: 

 𝐴|𝛼1⟩ = 𝛼1|𝛼1⟩, 

and 

 𝐴|𝛼4⟩ = 𝛼4|𝛼4⟩. 

I use the column representation of the kets: 

 |𝛼1⟩ = (
𝑎
𝑏
), and |𝛼4⟩ = (

𝑐
𝑑
). 

The normalized kets give: 

 𝑎2 + 𝑏2 = 1, and 𝑐2 + 𝑏2 = 1. 
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The two vectors are orthonormal:  

 𝑎𝑐 + 𝑏𝑑 = 0 . 

There is more: 

 multiply 𝐴|𝛼1⟩ = 𝛼1|𝛼1⟩, to the right with the bra ⟨𝛼1|: 

  𝐴|𝛼1⟩⟨𝛼1| = 𝛼1|𝛼1⟩⟨𝛼1|, 

 multiply 𝐴|𝛼4⟩ = 𝛼4|𝛼4⟩, to the right with the bra ⟨𝛼4|: 

 𝐴|𝛼4⟩⟨𝛼4| = 𝛼4|𝛼4⟩⟨𝛼4|. 
Both expressions with projection operators are added: 

 𝐴(|𝛼1⟩⟨𝛼1| + |𝛼4⟩⟨𝛼4|) = 𝛼1|𝛼1⟩⟨𝛼1| + 𝛼4|𝛼4⟩⟨𝛼4|. 

As mentioned before { |𝛼1⟩, |𝛼4⟩} is a complete set. 

Consequently, 

 (|𝛼1⟩⟨𝛼1| + |𝛼4⟩⟨𝛼4|) = 𝐼 = (
1 0
0 1

). 

Hence, 

 𝐴 = 𝛼1|𝛼1⟩⟨𝛼1| + 𝛼4|𝛼4⟩⟨𝛼4|. 

With the column representation used in the projection operators, we find 

 (𝑎
2 𝑎𝑏
𝑏𝑎 𝑏2

) + (𝑐
2 𝑐𝑑
𝑑𝑐 𝑑2

) = (
1 0
0 1

) . 

This gives  another set of relations between the elements of the basis vectors: 

 𝑎2 + 𝑐2 = 1, and 𝑑2 + 𝑏2 = 1, 

 𝑎𝑏 + 𝑐𝑑 = 0 ⟺  𝑏𝑎 + 𝑑𝑐 = 0 . 

There is some redundancy. 

I found: 

 |𝛼1⟩ = (
𝑎
𝑏
), and |𝛼4⟩ = (

𝑏
−𝑎
). 

With 𝑏 = √1 − 𝑎2, we are free to choose 𝑎 = 1. 

So, 

 |𝛼1⟩ = (
1
0
), and |𝛼4⟩ = (

0
−1
). This choice could have been made from the start. 

What about the matrix 𝐴? 

 𝐴 = 𝛼1|𝛼1⟩⟨𝛼1| + 𝛼4|𝛼4⟩⟨𝛼4| = 𝛼1 (
1 0
0 0

) + 𝛼4 (
0 0
0 1

). 

The elements of the matrix are the eigenvalues of the matrix: 

 𝐴 = (
𝛼1 0
0 𝛼4

). 

Let’s formulate this in a more general way. 

We have the operator 𝑳, and a complete set of kets |𝜆𝑖⟩, spanning the vector space. 

 𝑳|𝜆𝑖⟩ = 𝜆𝑖|𝜆𝑖⟩, 

where 𝜆𝑖, are the eigenvalues and |𝜆𝑖⟩, the eigenvectors of the operator 𝑳. 

Multiply 𝑳|𝜆𝑖⟩ = 𝜆𝑖|𝜆𝑖⟩, to the right on both sides with the bra ⟨𝜆𝑖|, 

 𝑳|𝜆𝑖⟩⟨𝜆𝑖| = 𝜆𝑖|𝜆𝑖⟩⟨𝜆𝑖|. 

Take the sum over 𝑖, the complete set, 

 𝑳∑ |𝜆𝑖⟩⟨𝜆𝑖| = ∑ 𝜆𝑖𝑖𝑖 |𝜆𝑖⟩⟨𝜆𝑖| ⟹ 𝑳 = ∑ 𝜆𝑖𝑖 |𝜆𝑖⟩⟨𝜆𝑖|. 



59 
 

7.2.3 Expectation Value and Projection Operators 

Assume a general ket |Ψ⟩  , expressed in the basis vectors of the complete set |𝜆𝑖⟩: 

 |Ψ⟩ = ∑ 𝑐𝑖𝑖 |𝜆𝑖⟩. 

Now, we evaluate ⟨Ψ|𝑳|Ψ⟩, the expectation value measuring the ket |Ψ⟩. 

Above, we expressed the observable in projection operators: 

 𝑳 = ∑ 𝜆𝑖𝑖 |𝜆𝑖⟩⟨𝜆𝑖|. 

Then, 

 ⟨Ψ|𝑳|Ψ⟩ = ∑ 𝜆𝑖⟨Ψ𝑖 |𝜆𝑖⟩⟨𝜆𝑖|Ψ⟩ ⟹ ⟨Ψ|𝐿|Ψ⟩ = ∑ 𝜆𝑖𝑖,𝑗 𝑐𝑗
∗⟨𝜆𝑗|𝜆𝑖⟩𝑐𝑗⟨𝜆𝑖|𝜆𝑗⟩ = 

 = ∑ 𝜆𝑖𝑖,𝑗 |𝑐𝑗|
2|⟨𝜆𝑗|𝜆𝑖⟩|

2. 

Now we see how the projection operators are “projecting out”: 

 ⟨Ψ|𝑳|Ψ⟩ = ∑ 𝜆𝑖𝑖,𝑗 |𝑐𝑗|
2𝛿𝑖𝑗 = ∑ 𝜆𝑖|𝑐𝑖|

2
𝑖 . 

Well, this a familiar expression: 

 ⟨Ψ|𝑳|Ψ⟩ = ∑ 𝜆𝑖|𝑐𝑖|
2

𝑖 = ∑ 𝜆𝑖𝑖 𝑃(𝜆𝑖) ⟹Eqs. (3.26) and (4.13). 

With Eq.(7.12): 

 ⟨Ψ|𝑳|Ψ⟩ = ∑ 𝜆𝑖|𝑐𝑖|
2

𝑖 = ∑ 𝜆𝑖𝑖 𝑃(𝜆𝑖) = 𝑇𝑟|Ψ⟩⟨Ψ|𝑳. 

  

7.3 Density Matrices: A New Tool 
In this section, Susskind dealt with the case not having a complete knowledge of the state of 

a system.  

The expectation value  ⟨𝐿⟩ in Eq. (7.13) should be written as ⟨𝑳⟩(= 𝑇𝑟 𝜌𝑳), a bold capital. 

At the top of page 199, the matrix representation of the density matrix is given with respect 

to the basis |𝑎⟩: 

 𝜌𝑎𝑎′ = ⟨𝑎|𝜌|𝑎
′⟩. 

I suppose this to be a matrix element. What does the matrix look like? For a pure state? 

 𝜌 the density operator is the projection operator the basis of which is |𝑎⟩: 

 𝜌 = |𝑎⟩⟨𝑎|. 

 𝜌|𝑎⟩ = |𝑎⟩⟨𝑎|𝑎⟩ = |𝑎⟩. 

So, the eigenvalue of this operator is 1.  

Consequently 𝑇𝑟(𝜌) = 1, 

and  

 ⟨𝑎|𝜌|𝑎⟩ = ⟨𝑎|𝑎⟩⟨𝑎|𝑎⟩ = 1. 

Furthermore 

 ⟨𝑳⟩ = 𝑇𝑟 𝜌𝑳 = ⟨𝑎|𝑳|𝑎⟩. 

In Lecture 7.6 an example is presented for an entangled state (a combined system). 

The same question on matrix elements arises for the operator 𝑳 and its matrix elements in 

Eq.(7.14). 

Furthermore, on page 199, where the expectation value is presented in matrix 

representation, Eq.(7.14), the order of multiplication is changed compared to Eq.(7.13)(see 

also page 209). It does not matter. In addition, the order of the indices 𝑎 and 𝑎′ is important: 

in this way 𝑇𝑟 𝜌𝑳 is represented. 

Let us pay some attention to the expression presented in Eq. (7.14): 

 〈𝑳〉 = 𝑇𝑟𝜌𝑳 = ∑ 𝐿𝑎′,𝑎𝑎,𝑎′ 𝜌𝑎,𝑎′. 

The preceding expression is not easy “to read”. 
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I choose for both operators 2 × 2 matrices. Both being Hamiltonian matrices: 

 𝐿 = (
𝐿11 𝐿12
𝐿21 𝐿22

), 

and  

 𝜌 = (
𝜌11 𝜌12
𝜌21 𝜌22

). 

Then, 

 〈𝑳〉 = 𝑇𝑟𝜌𝑳 = 𝑇𝑟 (
𝜌11 𝜌12
𝜌21 𝜌22

) ∙ (
𝐿11 𝐿12
𝐿21 𝐿22

) = 𝑇𝑟 (
𝜌11𝐿11 + 𝜌12𝐿21 𝜌11𝐿12 + 𝜌12𝐿22
𝜌21𝐿11 + 𝜌22𝐿21 𝜌21𝐿12 + 𝜌22𝐿22

) = 

 = 𝜌11𝐿11 + 𝜌12𝐿21 + 𝜌21𝐿12 + 𝜌22𝐿22, 
with, 

 𝐿21
∗ = 𝐿12, and 𝜌21

∗ = 𝜌12. 

  〈𝑳〉 = 𝜌11𝐿11 + 𝜌12𝐿12
∗ + 𝜌12

∗ 𝐿12 + 𝜌22𝐿22, 

a real number. 

Back to  

  〈𝑳〉 = 𝑇𝑟𝜌𝑳 = ∑ 𝐿𝑎′,𝑎𝑎,𝑎′ 𝜌𝑎,𝑎′. 

With 𝑎 = 1,2 and 𝑎′ = 1,2  

 ∑ 𝐿𝑎′,𝑎𝑎,𝑎′ 𝜌𝑎,𝑎′ = 𝐿11𝜌11 + 𝐿12𝜌21 + 𝐿21𝜌12 + 𝐿22𝜌22. 

Hence, this clarifies the notation. 

Keep in mind: 𝑇𝑟𝐴𝐵 = 𝑇𝑟𝐵𝐴, 

for the square matrices 𝐴 and 𝐵. 

 

Definitions: 

- pure state. When the density matrix corresponds to a single state, it is a projection 

operator that projects onto that state. Is a single state defined? 

- mixed state. When the density matrix is a mixture of projection operators. 

- full composite system? 

7.4 Entanglement and Density Matrices 
First the differences between classical mixed states and quantum mechanical entangled 
states are discussed. 
Quantum Mechanics: The state of a composite system can be absolutely pure, but each of its 
constituents must be described by a mixed state. 
Page 200, Susskind starts with a system composed of two parts 𝐴 and 𝐵. 
The wave function is given by 𝛹. I will follow the convention of page 136 and use for the 
wave function 𝜓. So, I prefer Eq. (7.15) to be written like: 
⟨𝑳⟩ = ⟨𝛹|𝑳|𝛹⟩ = ∑ 𝜓∗(𝑎′𝑏′)𝐿𝑎′𝑏′,𝑎𝑏𝜓(𝑎𝑏)𝑎𝑏,𝑎′𝑏′ ,  

as did Susskind on page 206. On the right-hand side of  Eq.(7.15), for the general expectation 
value, the expectation value is given in component representation. 
Susskind paid attention to a situation where the observable 𝑳  belongs to 𝐴. Then 𝑳 acts 
trivially on the 𝑏-index. This leads to Eq. (7.16).  
I think Susskind explained this more elegantly on page 204 and Eq. 7.18.  
In Eq.(7.17), Susskind presented the matrix element of the density matrix, I suppose. How 
does this compare with the matrix element: 
 𝜌𝑎𝑎′ = ⟨𝑎|𝜌|𝑎

′⟩, 
at the top of page 199? 
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Remark: 
Is 𝜌𝑎𝑎′  a special density matrix where the influence of 𝑏 is ‘traced out’ or projected out. 
In the literature the expression reduced density matrix can be found. Is 𝜌𝑎𝑎′  a reduced 
density matrix? 
 
Below Eq. (7.17) Susskind writes that “Eq. (7.16) has exactly the same form as Eq. (7.14) for 
expectation value of a mixed state”. I assume that this applies for the situation where the 
elements of the density matrix 𝜌𝑎𝑎′ are represented by Eq. (7.17). 
  
Question: To me it is not clear that Eq.(7.16) has the same form as Eq. (7.14) for the 
expectation value of a mixed state.                                                                                                    
Eq. (7.15): 
 ⟨𝑳⟩ = ⟨𝛹|𝑳|𝛹⟩ = ∑ 𝜓∗(𝑎′𝑏′)𝐿𝑎′𝑏′,𝑎𝑏𝜓(𝑎𝑏)𝑎𝑏,𝑎′𝑏′  . 

 𝐴 is not interested in 𝐵. Now the observable 𝑳 is associated with 𝐴 and the observable acts 
trivially on the 𝑏-index and ⟨𝑳⟩ is represented by Eq.(7.16):                                                    
⟨𝑳⟩ = ∑ 𝜓∗(𝑎′𝑎,𝑏,𝑎′ 𝑏)𝐿𝑎′,𝑎𝜓(𝑎𝑏).  

We know 𝜌𝑎𝑎′ to be, (Eq. 7.17): 
𝜌𝑎𝑎′ = ∑ 𝜓∗(𝑎′𝑏 𝑏)𝜓(𝑎𝑏) .  
With this expression for 𝜌𝑎𝑎′ , it is not clear to me Eq.(7.16) to have the same form as  
Eq.(7.14): 
 ⟨𝑳⟩ = ∑ 𝐿𝑎′,𝑎𝑎,𝑎′ 𝜌𝑎,𝑎′.  

Unless 𝜓(𝑎𝑏) is a (complex) number and 𝐿𝑎′,𝑎 an element of a matrix, then Eq.(7.16) has the 

same form as Eq.(7.14). Otherwise? 
 
Then, Susskind continues: “Indeed, only in the very special case of a product state will 𝜌 have 
the form of a projection operator”. Question: 𝜌 of the product state or 𝜌 of the subsystem? 
Then, “In other words, despite the fact that the composite system is described by a perfectly 
pure state, the subsystem 𝐴 must be described by a mixed state”. 
Pure and mixed state as defined in Lecture 7.3? 
 
First, let’s apply Eq.(7.17) for a product state given by Eq.(6.5):  
|𝛹⟩ = 𝛼𝑢𝛽𝑢|𝑢𝑢⟩ + 𝛼𝑢𝛽𝑑|𝑢𝑑⟩ + 𝛼𝑑𝛽𝑢|𝑑𝑢⟩ + 𝛼𝑑𝛽𝑑|𝑑𝑑⟩,  
and let’s calculate 𝜌𝑢𝑑 .  
Giving, with 𝑎 = 𝑢, 𝑎′ = 𝑑 and summing  over all 𝑏(= 𝑢, 𝑑) : 
 𝜌𝑢𝑑 = 𝜓𝑑𝑢

∗ 𝜓𝑢𝑢 + 𝜓𝑑𝑑
∗ 𝜓𝑢𝑑 ≡ 𝛼𝑑

∗𝛽𝑢
∗𝛼𝑢𝛽𝑢 + 𝛼𝑑

∗𝛽𝑑
∗𝛼𝑢𝛽𝑑 = 𝛼𝑑

∗𝛼𝑢(𝛽𝑢
∗𝛽𝑢 + 𝛽𝑑

∗𝛽𝑑).  
With Eq.(6.4), normalization for a product state, we have 
 𝜌𝑢𝑑 = 𝛼𝑑

∗𝛼𝑢,  
Secondly, let us denote the operator for Alice 𝜌𝐴 and for Bob 𝜌𝐵, and use the column 
representation of|𝛹⟩, we obtain 𝜌 = 𝜌𝐴⊗𝜌𝐵.  
Note:  Keep in mind the product state here to be a tensor product: 
 |𝛹⟩ = {𝛼𝑢|𝑢⟩ + 𝛼𝑑|𝑑⟩} ⊗ {𝛽𝑢|𝑢⟩ + 𝛽𝑑|𝑑⟩} = |𝛹𝐴⟩ ⊗ |𝛹𝐵⟩ 
For completeness: 

 𝜌𝐴 = |𝛹𝐴⟩ ⊗ ⟨𝛹𝐴| = (
𝛼𝑢
𝛼𝑑
)⊗ (𝛼𝑢

∗  𝛼𝑑
∗ ) = (

𝛼𝑢
∗𝛼𝑢 𝛼𝑑

∗𝛼𝑢
𝛼𝑢
∗𝛼𝑑 𝛼𝑑

∗𝛼𝑑
),  

and                         

 𝜌𝐵 = |𝛹𝐵⟩ ⊗ ⟨𝛹𝐵| = (
𝛽𝑢
𝛽𝑑
) ⊗ (𝛽𝑢

∗  𝛽𝑑
∗) = (

𝛽𝑢
∗𝛽𝑢 𝛽𝑑

∗𝛽𝑢
𝛽𝑢
∗𝛽𝑑 𝛽𝑑

∗𝛽𝑑
) ; 
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𝜌 = |𝛹⟩⊗ ⟨𝛹| = (

𝛼𝑢𝛽𝑢
𝛼𝑢𝛽𝑑
𝛼𝑑𝛽𝑢
𝛼𝑑𝛽𝑑

)⊗ (𝛼𝑢
∗𝛽𝑢

∗   𝛼𝑢
∗𝛽𝑑

∗   𝛼𝑑
∗𝛽𝑢

∗   𝛼𝑑
∗𝛽𝑑

∗).  

Then, with the tools presented in Lecture 7.1.2, after some tensor algebra and equating 
4 × 4 matrices: 
  𝜌 = 𝜌𝐴⊗𝜌𝐵. 
 

7.5 Entanglement for Two Spins 

 
Susskind started this Lecture with the definition of the density matrix and the following 

exercise. A warming-up. 

 

Exercise 7.4: About the density matrix for a given state vector 
 
Calculate the density matrix  for |𝛹⟩ = 𝛼|𝑢⟩ + 𝛽|𝑑⟩. 
This state vector represents a single state(page 198). The density matrix, which corresponds to a single state 
is the projection operator onto that state(page 198).  
So, 𝜌 = |𝛹⟩⟨𝛹|,  
and the matrix representation is illustrated by the example: 
 𝜌𝑑𝑢 = ⟨𝑢|𝜌|𝑑⟩ = ⟨𝑢|𝛹⟩⟨𝛹|𝑑⟩, page 202.  
There are four of these elements. The example shown gives with the inner products of the state vector and 
the basis vectors: 
 𝜌𝑑𝑢 = ⟨𝑢|(𝛼|𝑢⟩ + 𝛽|𝑑⟩)(𝛼

∗⟨𝑢| + 𝛽∗⟨𝑑|)|𝑑⟩ = 𝛽∗𝛼.  
This one of the four elements of the density matrix. 
Or, using the wave function notation, 𝜌𝑑𝑢 = 𝜓

∗(𝑑)𝜓(𝑢), with subscripts: 𝜓𝑑
∗𝜓𝑢 .  

Here,  use have been made of 𝜌𝑎′𝑎 = 𝜓
∗(𝑎′)𝜓(𝑎). 

Another one: 
 𝜌𝑢𝑢 = ⟨𝑢|(𝛼|𝑢⟩ + 𝛽|𝑑⟩)(𝛼

∗⟨𝑢| + 𝛽∗⟨𝑑|)|𝑢⟩ = 𝛼∗𝛼. 
Then, we finally obtain for the elements 𝜌𝑎′𝑎, of the density matrix 𝜌: 

 (
𝜌𝑢𝑢 𝜌𝑢𝑑
𝜌𝑑𝑢 𝜌𝑑𝑑

) = (
𝛼∗𝛼 𝛼∗𝛽
𝛽∗𝛼 𝛽∗𝛽

). 

With the normalization condition 
 ⟨Ψ|Ψ⟩ = 𝛼∗𝛼 + 𝛽∗𝛽 = 1, 

and the equal probability for 𝑢𝑝 and 𝑑𝑜𝑤𝑛, 𝛼∗𝛼 and 𝛽∗𝛽 must both be equal to 
1

2
 (page 41).  

Hence, we find 𝛼 =
1

√2
 and 𝛽 = ±

1

√2
. And we find again the two state vectors |𝑟⟩ and |𝑙⟩.  

On the other hand, we could have worked with the column representation: 

|𝛹⟩ = 𝛼 (
1
0
) + 𝛽 (

0
1
) = (

𝛼
𝛽) and ⟨𝛹| = (𝛼∗ 𝛽∗).  

Calculate |𝛹⟩⟨𝛹|: 

|𝛹⟩⟨𝛹| = (
𝛼
𝛽) (𝛼

∗ 𝛽∗) = (
𝛼𝛼∗ 𝛼𝛽∗

𝛽𝛼∗ 𝛽𝛽∗
) = (

𝛼∗𝛼 𝛼∗𝛽
𝛽∗𝛼 𝛽∗𝛽

), Hermitian. 

 

 

In Eq.(7.18), Susskind summarized how the operator works to obtain one observable of a 

composite system: 

 𝐿𝑎′𝑏′,𝑎𝑏 = 𝐿𝑎′𝑎𝛿𝑏′𝑏. 

The left-hand side of this expression is a 4 × 4 matrix, the right-hand side I a tensor product 

of two 2 × 2 matrices. 

Note: compare (7.16) and (7.19): Susskind mixed the lower case 𝜓 with the uppercase Ψ. 
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Compare (7.21) with (7.14). Note: Susskind changed the order of tensor multiplication. It 

does not matter. See the remark of Susskind just above exercise 7.5, page 209. 

Remark: On page 207 Susskind presents some properties of density matrices: 

• Density matrices are Hermitian. In general, a density matrix is a sum of projection 

operators, a linear combination of matrices, each multiplied by its probability, a 

number. Projection matrices are Hermitian, consequently the density matrix is 

Hermitian. 

• The trace of a density matrix is 1: 

 𝑇𝑟(𝜌) = 1. 

 𝑃(𝑎) is the probability that Alice’s system will be left in state 𝑎 if a measurement is 

performed. Now,  

𝑃(𝑎) =  ∑ 𝜓∗(𝑎, 𝑏)𝜓(𝑎, 𝑏) = 𝜌𝑎𝑎𝑏  .  

Since ∑ 𝑃(𝑎) = 1𝑎 , 𝑇𝑟(𝜌) = 1.  

• The eigenvalues of the density matrix are all positive and lie between 0 and 1. It 

follows that if any eigenvalue is 1, all the others are 0. For example: 

𝜌 = 𝑃1|𝛹⟩⟨𝛹| + 𝑃2|𝛷⟩⟨𝛷| ,  

then, 

 𝜌|𝛹⟩ = 𝑃1|𝛹⟩, and 𝜌|𝛷⟩ = 𝑃2|𝛷⟩.  

With  𝑃1 + 𝑃2 = 1, we have 0 < 𝑃1 < 1, and 0 < 𝑃2 < 1. When 𝑃1 = 1, 𝜌 = |𝛹⟩⟨𝛹|, 

and consequently a pure state. On pages 215 and 216 Susskind explains this in more 

detail.  

• For a pure state 𝜌2 = 𝜌 and 𝑇𝑟(𝜌2) = 1. A pure state: 𝜌 = |𝛹⟩⟨𝛹|, and                

𝜌2 = (|𝛹⟩⟨𝛹|)2.  

See page 195: 

 𝜌2 = |𝛹⟩⟨𝛹|𝛹⟩⟨𝛹| = |𝛹⟩⟨𝛹|.  

Since 𝑇𝑟(𝜌) = 1 → 𝑇𝑟(𝜌2) = 1 . 

• For a mixed or entangled state 𝜌2 ≠ 𝜌 and 𝑇𝑟(𝜌2) < 1.  

Here mixed or entangled has the same meaning? 

A mixed state, a composite state, an entangled state, ……. A conundrum of states. 

Some explanation could be helpful.  

Well, a subsystem of an entangled state is considered a mixed state. The entangled 

state is a pure state? 

Some explanation is given on page 208. 
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Exercise 7.5 About the density matrix and the trace 

a) Show that (
𝑎 0
0 𝑏

)
2

= (
𝑎 0
0 𝑏

) (
𝑎 0
0 𝑏

) = (𝑎
2 0
0 𝑏2

) , QED.  

It is about matrix multiplication. 
b) Now, suppose  

𝜌 = (

1

3
0

0
2

3

) . 

Calculate 𝜌2 = (

1

3
0

0
2

3

)(

1

3
0

0
2

3

) = (

1

9
0

0
4

9

), then 𝑇𝑟(𝜌) = 1 and 𝑇𝑟(𝜌2) =
5

9
. 

c) 𝜌, represents a mixed or entangled state one of the properties of density matrices. 

 

 

Exercise 7.6 For a density matrix the trace equals 1 
Use Eq. 7.22 to show that if 𝜌 is a density matrix, then 𝑇𝑟(𝜌) = 1. 
Eq. (7.22) reads: 𝑃(𝑎) = 𝜌𝑎𝑎.  
𝑃(𝑎) is a diagonal entry of the density matrix 𝜌. We know ∑ 𝑃(𝑎) = 1𝑎 . Consequently, 𝑇𝑟(𝜌) = 1. See also 
the second bullet point above. 

 

7.6 A Concrete Example: Calculating Alice’s Density Matrix 
In this section  Susskind calculates Alice’s density matrix.  

 

Remarks: concerning pages 210 and 211. 

The calculation of the matrix elements of Alice’s density matrix are based on Eq.(7.20) { or 

for that matter, Eq. (7.23)}: 

𝜌𝑎′𝑎 = ∑ 𝜓∗(𝑎, 𝑏)𝜓(𝑎′, 𝑏)𝑏 .  

Compare this with Eq.(7.17) and you will notice that 𝑎′ and 𝑎 have been switched. Well, 

that’s not important. However, using Eq.(7.20) with for example 𝑎′ = 𝑢, 𝑎 = 𝑑 and summing 

over 𝑏, you will find:                                                                   

  𝜌𝑢𝑑 = 𝜓
∗(𝑑, 𝑢)𝜓(𝑢, 𝑢) + 𝜓∗(𝑑, 𝑑)𝜓(𝑢, 𝑑) ≠ 𝜌𝑢𝑑 {from (7.17)}. 

I noticed from the matrix element at the bottom of page 211:  

 𝜌𝑢𝑑 = 𝜌𝑑𝑢
∗  , 

illustrating the density matrix to be Hermitian→ 𝜌𝑎𝑎′ = 𝜌𝑎′𝑎
∗  . 

The same example for 𝑎′ = 𝑢, 𝑎 = 𝑑 and summing over 𝑏 in Eq.(7.17), you obtain a value for 

𝜌𝑑𝑢 ≠ 𝜌𝑑𝑢 . The latter found at the bottom of page 211.  

What to do? An expression for the elements of Alice’s density matrix that works,  read:  

𝜌𝑎′𝑎 = ∑ 𝜓∗(𝑎′, 𝑏)𝜓(𝑎, 𝑏)𝑏 , Eq.(7.17). Whether or not this is the correct expression does not 

bother us since the density matrix is Hermitian.  

For the concrete example I assume the expressions at the bottom of page 211 to be correct. 

At the bottom of page 201 Susskind made the remark: ” There’s a subtle point about our 

notation ……….”. And on page 205: “As I warned, there are lots of indices”. Subtle indeed. 

Caveat Subscriptum.  

Additionally, you might wonder why Susskind changed for the notation of the wave function 

from, say, 𝜓𝑢𝑑 to 𝜓(𝑢, 𝑑). I do not know. Getting used to various conventions? 
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Exercise 7.7 The square of the density matrix 

Use Eq. (7.24), 𝜌 = (

1

2
0

0
1

2

), to calculate 𝜌2.       

 𝜌2 = (

1

2
0

0
1

2

)(

1

2
0

0
1

2

) = (

1

4
0

0
1

4

).  

For a mixed or entangled state, top page 208,  𝜌2 ≠ 𝜌, and 𝑇𝑟 𝜌2 =
1

2
< 1. 

 

Remark: With this Exercise 7.7 there is no problem related with the index’s conundrum. 

However, with the following exercise we are not so sure. 

So let’s return to the full equation for the combined system Eq. (7.15) where we will use the 

wave equation notation and the subscripts. Also using the subtle point of Susskind on indices 

at the bottom of page 201, we have the following convention for the elements of matrices-

see Eq.(7.1): 𝐿𝑎𝑎′ = ⟨𝑎|𝑳|𝑎′⟩. 

The full equation for the expectation value of 𝑳 is, Eq.(7.15): 

⟨𝛹|𝑳|𝛹⟩ = ∑ 𝜓𝑎′𝑏′
∗ 𝐿𝑎𝑏,𝑎′𝑏′𝜓𝑎𝑏𝑎𝑏,𝑎′𝑏′  .  

Now, when we use the same notation convention for Alice’s density matrix and for Bob’s, we 

have: 

Alice 𝜌𝑎𝑎′ = ∑ 𝜓𝑎′𝑏
∗ 𝜓𝑎𝑏 𝑏 , and Bob 𝜌𝑏𝑏′ = ∑ 𝜓𝑎𝑏′

∗
𝑎 𝜓𝑎𝑏.      (L7.1) 

Note: when an index occurs twice in the summation the Einstein summation index 

convention teaches us that we can delete the summation sign Σ. 

So Eq. (7.17) represents the elements of Alice’s matrix. From this we may conclude that 𝜌𝑢𝑑 

and 𝜌𝑑𝑢 have been switched with no detrimental effect in Exercise 7.7 and at the bottom of 

page 211. The density matrix is Hermitian. 
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Exercise 7.8 Calculate A’s density matrix and B’s density matrix for three given states. 
For each of the following states calculate Alice’s density matrix and Bob’s density matrix. Check their 
properties. 

1) |𝛹1⟩ =
1

2
(|𝑢𝑢⟩ + |𝑢𝑑⟩ + |𝑑𝑢⟩ + |𝑑𝑑⟩), and 𝜓𝑢𝑢 = 𝜓𝑢𝑑 = 𝜓𝑑𝑢 = 𝜓𝑑𝑑 =

1

2
.  

The normalization condition is fulfilled. Now, we use Eq. L7.1. 

Elements of Alice’s density matrix are: 𝜌𝑢𝑢 = 𝜓𝑢𝑢
∗ 𝜓𝑢𝑢 +𝜓𝑢𝑑

∗ 𝜓𝑢𝑑 =
1

2
, and this value is found for all the 

matrix elements of Alice.  

So 𝜌𝐴𝑙𝑖𝑐𝑒 = (

1

2

1

2
1

2

1

2

); 𝑇𝑟 𝜌𝐴𝑙𝑖𝑐𝑒 = 1 and 𝜌𝐴𝑙𝑖𝑐𝑒
2 = 𝜌𝐴𝑙𝑖𝑐𝑒 .  

Now Bob’s matrix. We expect this matrix to be equal to Alice’s since |𝛹1⟩ represents a product matrix with 

amplitudes 
1

√2
. Let’s find out. We take  𝜌𝑢𝑑   and find                                                                                            

𝜌𝑢𝑑 = 𝜓𝑢𝑢
∗ 𝜓𝑢𝑑 +𝜓𝑑𝑢

∗ 𝜓𝑑𝑑 =
1

2
. This value is found for all the matrix elements of Bob. 

So 𝜌𝐵𝑜𝑏 = (

1

2

1

2
1

2

1

2

); 𝑇𝑟 𝜌𝐵𝑜𝑏 = 1 and 𝜌𝐵𝑜𝑏
2 = 𝜌𝐵𝑜𝑏.  

The state is not entangled, a product state. See Eq.(6.5).  
What does the projection operator look like? On page 201 Susskind writes: “Indeed, only in the special case 
of a product state will 𝜌 have the form of a projection operator. In other words, even though the composite 
system is described by a perfectly pure state, subsystem 𝐴 must be described by a mixed state”. So for the 
above product state we have: 

  |𝑝𝑟𝑜𝑑𝑢𝑐𝑡 𝑠𝑡𝑎𝑡𝑒⟩ =  |𝛹1⟩ = {
1

√2
(|𝑢⟩ + |𝑑⟩)} ⊗ {

1

√2
(|𝑢⟩ + |𝑑⟩)} = |𝛹1𝐴𝑙𝑖𝑐𝑒⟩ ⊗ |𝛹1𝐵𝑜𝑏⟩. 

And we can formulate the product state in terms of a projection operator. 

𝜌𝑝𝑟𝑜𝑑𝑢𝑐𝑡 𝑠𝑡𝑎𝑡𝑒 = |𝛹1⟩⟨𝛹1|. With the column vector representation of |𝛹1⟩ and elements: 
1

2
,
1

2
,
1

2
,
1

2
, we obtain 

for the 4 × 4 matrix representation of 𝜌𝑝𝑟𝑜𝑑𝑢𝑐𝑡 𝑠𝑡𝑎𝑡𝑒 = (

1

4
⋯

1

4

⋮ ⋱ ⋮
1

4
⋯

1

4

). 

 𝑇𝑟  𝜌𝑝𝑟𝑜𝑑𝑢𝑐𝑡 𝑠𝑡𝑎𝑡𝑒 = 1, and 𝑇𝑟 𝜌𝑝𝑟𝑜𝑑𝑢𝑐𝑡 𝑠𝑡𝑎𝑡𝑒
2 = 1.  

In addition:  𝜌𝑝𝑟𝑜𝑑𝑢𝑐𝑡 𝑠𝑡𝑎𝑡𝑒 = |𝛹1⟩⟨𝛹1| = 𝜌𝐴𝑙𝑖𝑐𝑒 ⊗𝜌𝐵𝑜𝑏. 

2) |𝛹2⟩ =
1

√2
(|𝑢𝑢⟩ + |𝑑𝑑⟩). A triplet state |𝑇2⟩, certainly not a product state as we learned in Lecture 6. For 

this case the amplitudes are: 𝜓𝑢𝑢 = 𝜓𝑑𝑑 =
1

√2
, and 𝜓𝑢𝑑 = 𝜓𝑑𝑢 = 0. 

The elements of Alice’s matrix are found with help of Eq. (L7.1): 

𝜌𝐴𝑙𝑖𝑐𝑒 = (

1

2
0

0
1

2

) and 𝜌𝐴𝑙𝑖𝑐𝑒
2 = (

1

4
0

0
1

4

); So 𝜌𝐴𝑙𝑖𝑐𝑒 ≠ 𝜌𝐴𝑙𝑖𝑐𝑒
2  and 𝑇𝑟 𝜌𝐴𝑙𝑖𝑐𝑒

2 =
1

2
< 1.  

The elements of Bob’s matrix are also found with help of Eq. (L7.1): 

𝜌𝐵𝑜𝑏 = 𝜌𝐴𝑙𝑖𝑐𝑒 = (

1

2
0

0
1

2

) and 𝜌𝐵𝑜𝑏
2 = (

1

4
0

0
1

4

); So 𝜌𝐵𝑜𝑏 ≠  𝜌𝐵𝑜𝑏
2  and 𝑇𝑟  𝜌𝐵𝑜𝑏

2 =
1

2
< 1. 

Alice’s and Bob’s density matrices are  proportional to the unit matrix. In section 7.7.2 Susskind will explain 
this phenomena. 
Here it is shown again the triplet state |𝑇2⟩ to be an entangled state. Is this called a single state? 
What does the projection operator look like? Well, certainly it is a 4 × 4 matrix of which the elements are 
found by the vector representation of 𝜌 = |𝛹⟩⟨𝛹|. What is the meaning of this projection operator? 

The elements of |𝛹⟩ are: 0,
1

√2
,
1

√2
, 0. 

The matrix then reads: 𝜌𝑒𝑛𝑡𝑎𝑛𝑔𝑙𝑒𝑑 =

(

 
 

0   0   0    0

0   
1

2
   
1

2
   0

0   
1

2
   
1

2
   0

0   0   0    0)

 
 

.  

So 𝑇𝑟 𝜌𝑒𝑛𝑡𝑎𝑛𝑔𝑙𝑒𝑑 = 1 and 𝑇𝑟 𝜌𝑒𝑛𝑡𝑎𝑛𝑔𝑙𝑒𝑑
2 = 1. 

Furthermore  𝜌𝑒𝑛𝑡𝑎𝑛𝑔𝑙𝑒𝑑 = |𝛹2⟩⟨𝛹2| ≠ 𝜌𝐴𝑙𝑖𝑐𝑒⊗ 𝜌𝐵𝑜𝑏. 
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3) |𝛹3⟩ =  
1

5
(3|𝑢𝑢⟩ + 4|𝑢𝑑⟩. What kind of state is this one? We’ll find out. It is normalized and looks like 

meeting Pythagoras.  

The amplitudes are   𝜓𝑢𝑢 =
3

5
, 𝜓𝑢𝑑 =

4

5
, and 𝜓𝑑𝑢 = 𝜓𝑑𝑑 = 0.  

The elements of Alice’s matrix are found with help of Eq. (L7.1): 

𝜌𝐴𝑙𝑖𝑐𝑒 = (
1 0
0 0

) and 𝜌𝐴𝑙𝑖𝑐𝑒
2 = (

1 0
0 0

); 𝜌𝐴𝑙𝑖𝑐𝑒
2 = 𝜌𝐴𝑙𝑖𝑐𝑒  and 𝑇𝑟 𝜌𝐴𝑙𝑖𝑐𝑒 =  𝑇𝑟 𝜌𝐴𝑙𝑖𝑐𝑒

2 = 1. 

The elements of Bob’s matrix are also found with help of Eq. (L7.1): 

𝜌𝐵𝑜𝑏 =
1

25
(
9 12
12 16

) and  𝜌𝐵𝑜𝑏
2 =

1

25
(
9 12
12 16

); 𝜌𝐵𝑜𝑏
2 = 𝜌𝐵𝑜𝑏  and 𝑇𝑟 𝜌𝐵𝑜𝑏 = 𝑇𝑟 𝜌𝐵𝑜𝑏

2 = 1. 

What kind of state is |𝛹3⟩? Looking at the density matrices of Alice and Bob, this state is a product state. 
Using Eq.(6.4), normalisation conditions, and Eq.(6.5), the expanded product state and composite notation:  

|𝑝𝑟𝑜𝑑𝑢𝑐𝑡 𝑠𝑡𝑎𝑡𝑒⟩ = |𝑢⟩ ⊗
1

5
(3|𝑢⟩ + 4|𝑑⟩) = |𝛹3𝐴𝑙𝑖𝑐𝑒⟩ ⊗ |𝛹3𝐵𝑜𝑏⟩. 

𝜌𝑝𝑟𝑜𝑑𝑢𝑐𝑡 𝑠𝑡𝑎𝑡𝑒 = |𝛹3⟩⟨𝛹3| . With the vector representation of |𝛹3⟩ and elements: 
3

5
,
4

5
, 0, 0, we obtain for the 

4 × 4 matrix representation of 

  𝜌𝑝𝑟𝑜𝑑𝑢𝑐𝑡 𝑠𝑡𝑎𝑡𝑒 =
1

25
(

 9  12  0  0
12 16  0  0
  0   0   0  0
  0   0   0  0

). 

𝑇𝑟  𝜌𝑝𝑟𝑜𝑑𝑢𝑐𝑡 𝑠𝑡𝑎𝑡𝑒 = 1, and 𝑇𝑟 𝜌𝑝𝑟𝑜𝑑𝑢𝑐𝑡 𝑠𝑡𝑎𝑡𝑒
2 = 1. 

In addition  𝜌𝑝𝑟𝑜𝑑𝑢𝑐𝑡 𝑠𝑡𝑎𝑡𝑒 = |𝛹1⟩⟨𝛹1| = 𝜌𝐴𝑙𝑖𝑐𝑒⊗ 𝜌𝐵𝑜𝑏. 

 

 

Remark: Density matrix of a product state equals the tensor product of the two constituting 

states 

 

In the above Exercise 7.8 we included the density matrix of the composite state and found 

for the product state the density matrix, 𝜌𝑝𝑟𝑜𝑑𝑢𝑐𝑡 𝑠𝑡𝑎𝑡𝑒  , to be the tensor product of the two 

building blocks: Alice’s  and Bob’s state, 𝜌𝐴𝑙𝑖𝑐𝑒⊗𝜌𝐵𝑜𝑏 .  Can we prove that without using 

amplitudes? Let’s have a look. 

Proof by the method of contradiction: 

The state vector for the product state is |𝛹⟩ ,for Alice’s |𝛹𝐴⟩  and Bob’s |𝛹𝐵⟩. So we want to 

prove: |𝛹⟩⟨𝛹| = |𝛹𝐴⟩⟨𝛹𝐴| ⊗ |𝛹𝐵⟩⟨𝛹𝐵| ,       (L7.2) 

or 𝜌𝑝𝑟𝑜𝑑𝑢𝑐𝑡 𝑠𝑡𝑎𝑡𝑒 = 𝜌𝐴𝑙𝑖𝑐𝑒⊗𝜌𝐵𝑜𝑏. 

We know for a ket vector: 

|𝛹𝑖⟩⟨𝛹𝑖| |𝛹𝑖⟩ = |𝛹𝑖⟩ ,          (L7.3) 

where 𝑖 refers to Alice’s or Bob’s state vector: 𝛹𝐴 or 𝛹𝐵  respectively.   (see page 194, second 

bullet point).   

Eq. (L7.3) applies also to the bra vectors  ⟨𝛹𝑖| .  

Now, plug into Eq. (L7.2) in the left part and the right part on the right-hand side  |𝛹𝐵⟩: 

|𝛹⟩⟨𝛹||𝛹𝐵⟩ = |𝛹𝐴⟩⟨𝛹𝐴| ⊗ |𝛹𝐵⟩⟨𝛹𝐵| |𝛹𝐵⟩, this gives with Eq. (L7.3) 

|𝛹⟩⟨𝛹||𝛹𝐵⟩ = |𝛹𝐴⟩⟨𝛹𝐴| ⊗ |𝛹𝐵⟩.  

Plug into the right part and the left part on the left-hand side of the last equation ⟨𝛹𝐴| : 

⟨𝛹𝐴| |𝛹⟩⟨𝛹||𝛹𝐵⟩ = ⟨𝛹𝐴| |𝛹𝐴⟩⟨𝛹𝐴| ⊗ |𝛹𝐵⟩, this gives with Eq. (L7.3) 

⟨𝛹𝐴| |𝛹⟩⟨𝛹|𝛹𝐵⟩ = ⟨𝛹𝐴| ⊗ |𝛹𝐵⟩. 

Rewrite this equation by reversing the order of the two numbers on the left-hand side: 

⟨𝛹|𝛹𝐵⟩⟨𝛹𝐴||𝛹⟩ = ⟨𝛹𝐴| ⊗ |𝛹𝐵⟩. In this equation we substitute for |𝛹⟩ , |𝛹𝐴⟩ ⊗ |𝛹𝐵⟩, and 

for ⟨𝛹| , ⟨𝛹𝐴| ⊗ ⟨𝛹𝐵|. Then we find: 
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⟨𝛹𝐴| ⊗⟨𝛹𝐵||𝛹𝐵⟩⟨𝛹𝐴||𝛹𝐴⟩ ⊗ |𝛹𝐵⟩ = ⟨𝛹𝐴| ⊗ |𝛹𝐵⟩ or the left hand side equals the right hand 

side: 

left ⟨𝛹𝐴| ⊗ |𝛹𝐵⟩ = ⟨𝛹𝐴| ⊗ |𝛹𝐵⟩ right. 

There is no contradiction and we have proven both product state examples in Exercise 7.8. 

7.7 Tests for Entanglement 
In this Lecture answers are looked for to questions like: are there various degrees of 

entanglement, can they be quantified, etc.  

Entanglement is the quantum mechanical generalization of correlation. 

It is about a mathematical procedure. 

7.7.1 The Correlation Test for Entanglement 

It is about expectation values. 

 

Exercise 7.9 For a product state the correlation to be zero 
Given any Alice observable 𝑨 and any Bob observable 𝑩, show that for a product state, the correlation 
𝐶(𝐴, 𝐵) is zero. 
Note: A product state is a state with zero entanglement and consequently the correlation is zero. See  
Exercise 6.1.  
We know, Eq. (7.13): ⟨𝑨⟩ = 𝑇𝑟 𝜌𝐴𝑨, ⟨𝑩⟩ = 𝑇𝑟 𝜌𝐵𝑩, and ⟨𝑨𝑩⟩ = 𝑇𝑟 𝜌𝐴𝐵𝑨𝑩.  
We have a product state. So, we can make use of 𝜌𝐴𝐵 = 𝜌𝑝𝑟𝑜𝑑𝑢𝑐𝑡 𝑠𝑡𝑎𝑡𝑒 = 𝜌𝐴𝑙𝑖𝑐𝑒 ⊗𝜌𝐵𝑜𝑏. Furthermore, the 

trace of a product of two matrices does not depend on their order of multiplication. Then, we can write for 
the correlation, Eq.(7.13) the expression for the expectation value: 
 𝐶(𝐴, 𝐵) = 𝑇𝑟 𝑨𝑩𝜌𝐴⊗ 𝜌𝐵 − 𝑇𝑟 𝑨𝜌𝐴 𝑇𝑟 𝑩𝜌𝐵 = 0,  
and since 𝑨 operates on Alice’s state vector and 𝑩 on Bob’s state vector  
𝐶(𝐴, 𝐵) = 𝑇𝑟 𝑨𝜌𝐴⊗  𝑩𝜌𝐵 − ( 𝑇𝑟 𝑨𝜌𝐴) (𝑇𝑟 𝑩𝜌𝐵) = 0.  
Now, plug into this equation a general 2 × 2 matrix for 

 𝑨𝜌𝐴 = (
𝑎11 𝑎12
𝑎21 𝑎22

)  

and for 

 𝑩𝜌𝐵 = (
𝑏11 𝑏12
𝑏21 𝑏22

). 

Then 
 𝑇𝑟 𝑨𝜌𝐴⊗  𝑩𝜌𝐵 = 𝑎11𝑏11 + 𝑎11𝑏22 + 𝑎22𝑏11 + 𝑎22𝑏22, 
and 
 ( 𝑇𝑟 𝑨𝜌𝐴)(𝑇𝑟 𝑩𝜌𝐵) = 𝑎11𝑏11 + 𝑎11𝑏22 + 𝑎22𝑏11 + 𝑎22𝑏22. 
Hence, 
 𝐶(𝐴, 𝐵) = 𝑇𝑟 𝑨𝜌𝐴⊗  𝑩𝜌𝐵 − ( 𝑇𝑟 𝑨𝜌𝐴) (𝑇𝑟 𝑩𝜌𝐵) = 0. 
For a product state there is no correlation. 
 𝐶(𝐴, 𝐵) = 〈𝑨𝑩〉 − 〈𝑨〉〈𝑩〉 = 0 
 

 

 

Then, Susskind writes: “From this exercise we ca learn something about entanglement. If a 

system is in state where one can find any two observables 𝑨 and 𝑩 that are correlated-

meaning that 𝐶(𝐴, 𝐵) ≠ 0 – then the state is entangled.” Well, what I learned from this 

exercise for a product state 𝐶(𝐴, 𝐵) = 0. Obviously, when 𝐶(𝐴, 𝐵) ≠ 0 is defined for an 

entangled state, the answer is almost trivial. 
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7.7.2 The Density Matrix Test for Entanglement 

In this Lecture Susskind described a test for entanglement where only one of the density 

matrices, 𝐴’s one or 𝐵’s one, is needed. 

Here again, the proof is based on a product state→being not entangled. 

On page 217, in the middle,  

“…, she finds something very disappointing: the density matrix is proportional to the unit 

matrix. All the eigenvalues are equal, and given that they all sum up to unity, each 

eigenvalue is equal to 1/𝑁𝐴.” 𝑁𝐴 is the dimension of Alice’s space of states. See Exercise 7.8, 

2). 

7.8 The Process of Measurement 
In the introduction of this Lecture Susskind mentioned the debates on so-called reality. An 

interesting remark. See Smolin (1). 

Then, Susskind mentioned: “I’m going to steer away from those debates and stick to the facts.” 

Whatever facts mean with respect to quantum mechanics. 

Measurement and quantum mechanics: a measurement involves a system and an apparatus.  

Then, Susskind constructed a mathematical system including the measurement equipment, pages 

219-221. 

Remark: 

At the top of page 220, six basis vectors are presented for the composite (tensor product) 

space of states. So, a state is represented by a column vector of six components? In the 

remark below, I presented the final state vector to be 2-dimensional. Does a 6-dimensional 

vector collapse into a 2-dimensional one? 
 

Exercise 7.10: a state vector→completely unentangled state 
Verify that the state vector, including the measurement equipment in Eq.(7.30), represents a completely 
unentangled state. 
The initial state vector is: 
|𝛹⟩ = 𝛼𝑢|𝑢, 𝑏⟩ + 𝛼𝑑|𝑑, 𝑏⟩, Eq.(7.30) . 
Unentanglement means, in general, for the wave function, 𝜓𝑎𝑏 = 𝜓𝑎𝜓𝑏. 
For the above state vector, after inspection, we have: 𝜓𝑢𝑏 = 𝛼𝑢, and 𝜓𝑑𝑏 = 𝛼𝑑.  

The initial spin state |𝛹𝑠⟩ = 𝛼𝑢|𝑢⟩ + 𝛼𝑑|𝑑⟩, and for the apparatus: |𝛹𝑎𝑝⟩ = |𝑏⟩.  

Verification: the initial state vector can be written as:                                                                                    |𝛹⟩ =
(𝛼𝑢|𝑢⟩ + 𝛼𝑑|𝑑⟩) ⊗ |𝑏⟩ = 𝛼𝑢|𝑢, 𝑏⟩ + 𝛼𝑑|𝑑, 𝑏⟩ .   
Comparing this with Eq.(6.5), we know |𝛹⟩ to represent a product state. 

     

Remark: 

On page 221 Susskind showed the final state(𝑓𝑠) :  |𝛹𝑓𝑠⟩ after the measurement.  

For the 𝑢𝑝 state: |𝑢, 𝑏⟩ → |𝑢,+1⟩.  

If the spin is in the 𝑑𝑜𝑤𝑛 state: |𝑑, 𝑏⟩ → |𝑑,−1⟩.  

The state |𝛹⟩ changes from 𝛼𝑢|𝑢, 𝑏⟩ + 𝛼𝑑|𝑑, 𝑏⟩ into the final state: 

  |𝛹𝑓𝑠⟩ = 𝛼𝑢|𝑢, +1⟩ + 𝛼𝑑|𝑑, −1⟩ .  

In column vector representation: 

 |𝛹𝑓𝑠⟩ = 𝛼𝑢 (
1
0
)⊗ (+1) + 𝛼𝑑 (

0
1
)⊗ (−1) = (

𝛼𝑢
−𝛼𝑑

). 

This is an entangled state . This final state  |𝛹𝑓𝑠⟩  cannot be written as  

(𝛼𝑢|𝑢⟩ + 𝛼𝑑|𝑑⟩) ⊗ (| + 1⟩ + | − 1⟩) = 𝛼𝑢|𝑢, +1⟩ + 𝛼𝑢|𝑢, −1⟩ + 𝛼𝑑|𝑑, +1⟩ + 𝛼𝑑|𝑑 − 1⟩ . 
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Since we find four contradictory expressions: 𝛼𝑢 = 1, 𝛼𝑢 = 0, 𝛼𝑑 = 0, and 𝛼𝑑 = 1, by 

comparing this tensor product with the final entangled state |𝛹𝑓𝑠⟩. 

Conclusion, the wave function 𝜓𝑎𝑏 cannot be factorized into 𝜓𝑎𝜓𝑏. 

Susskind added: “In fact, if 𝛼𝑢 = −𝛼𝑑, it is the maximally entangled singlet state”.  

Let us have a look. For the final state we find with Eq. (L7.1): 

 𝜌𝑠 = (
𝛼𝑢
∗𝛼𝑢 0
0 𝛼𝑑

∗𝛼𝑑
),  

and  

𝑇𝑟 𝜌𝑠 = 𝛼𝑢
∗𝛼𝑢 + 𝛼𝑑

∗𝛼𝑑 .  

Furthermore with Eq. (L7.1) for the apparatus                           

 𝑇𝑟 𝜌𝑎𝑝𝑝 = 𝛼𝑢
∗𝛼𝑢 + 𝛼𝑑

∗𝛼𝑑.  

Normalization of the final state |𝛹𝑓𝑠⟩ shows 𝛼𝑢
∗𝛼𝑢 + 𝛼𝑑

∗𝛼𝑑 = 1.  

With help of this expression, we have 𝑇𝑟 𝜌𝑠
2 ≠ 1, and 𝑇𝑟 𝜌𝑎𝑝𝑝

2 ≠ 1. The density matrix 𝜌𝑓𝑠 of 

the final state is found with help of the column vector representation of |𝛹𝑓𝑠⟩. The elements 

of the column are: 𝛼𝑢, − 𝛼𝑑.   

 𝜌𝑓𝑠 is a 2× 2 matrix: 

  (
𝛼𝑢
∗𝛼𝑢 𝛼𝑑

∗𝛼𝑢
𝛼𝑢
∗𝛼𝑑 𝛼𝑑

∗𝛼𝑑
), 

and  

𝑇𝑟 𝜌𝑓𝑠 = 𝛼𝑢
∗𝛼𝑢 + 𝛼𝑑

∗𝛼𝑑 = 1. In addition, 𝑇𝑟 𝜌𝑓𝑠
2 = (𝛼𝑢

∗𝛼𝑢 + 𝛼𝑑
∗𝛼𝑑)

2 = 1. A pure state? Last 

bullet point on page 207. 

 

With 𝛼𝑢 = −𝛼𝑑 we find 𝛼𝑢
∗𝛼𝑢 = 𝛼𝑑

∗𝛼𝑑 and 𝛼𝑢
∗𝛼𝑢 =

1

2
. Neglecting a phase factor this results 

into 𝛼𝑢 =
1

√2
. Now it becomes clear that for 𝛼𝑢 = −𝛼𝑑 there is maximum entanglement. 

Look at 𝜌𝑠: 

𝜌𝑠 = (
𝛼𝑢
∗𝛼𝑢 0
0 𝛼𝑑

∗𝛼𝑑
) =

1

2
(
1 0
0 1

). The density matrix is proportional to the unit matrix. Each 

measurement outcome is equally likely. 

I did not understand the line at the bottom of page 222: “But then there is good old 

Charlie….”. 

On the pages 232, 233 and 234 Susskind summarizes entanglement for a product state, a 

singlet state and a “near singlet”. He concludes this lecture with a remark on reality and 

confusion. So, the debate, mentioned at the beginning of this lecture, continues. 

7.9 Entanglement and Locality. 
This Lecture starts with another debate: is quantum mechanics local or nonlocal? 

Then, Susskind explained the meaning of locality. 

7.10 The Quantum Sim: An Introduction to Bell’s Theorem 
This Lecture started with the remark: “… that unitary played a prominent role in 

guaranteeing that no signal can be send instantaneously.”  

Susskind spent attention to the subject matter: “… he (Einstein) and Bell were talking about a 

totally different notion of locality….” , compared to the locality discussed in Lecture 7.9. 

Then, Susskind invites you to play a computer game. Starting with one computer and next, 
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with two computers.  

Susskind concluded this Lecture with the remark the problem not being a quantum 

mechanical problem.3 

7.11 Entanglement Summary. 
This Lecture started with the remark entanglement being “the hardest concept to accept”.  

Then, a compact summary of entanglement is presented. 

Rap Sheet 1 State-Vector No Entanglement 

This rap sheet is about a product state (No entanglement). 

Wanted for: Excessive Locality, Impersonating a Classical system. 

Description: Each subsystem is fully characterized. There are no correlations between A’s 

and B’s systems. 

The numerical values for normalization: 

 A product state  |𝛹𝑃𝑟𝑜𝑑𝑢𝑐𝑡⟩ is the result of completely independent preparations by A’s - 

and B’s system. See page 163:                                                    

 |𝛹𝐴⟩ = 𝛼𝑢|𝑢⟩ + 𝛼𝑑|𝑑⟩, and 

 |𝛹𝐵⟩ = 𝛽𝑢|𝑢⟩ + 𝛽𝑑|𝑑⟩.  

So, the State-Vector 

 |𝛹𝑃𝑟𝑜𝑑𝑢𝑐𝑡⟩ = |𝛹𝐴⟩ ⊗ |𝛹𝐵⟩, Eq.(6.5). 

⟨𝛹𝐴|𝛹𝐴⟩ = 1 and ⟨𝛹𝐵|𝛹𝐵⟩ = 1.  

These normalization conditions produce Eq.(6.4):                

 𝛼𝑢
∗𝛼𝑢 + 𝛼𝑑

∗𝛼𝑑 = 1  and 𝛽𝑢
∗𝛽𝑢 + 𝛽𝑑

∗𝛽𝑑 = 1. 

Before going any further, let’s do some ket, bra and tensor algebra. 

⟨𝛹𝑃𝑟𝑜𝑑𝑢𝑐𝑡|𝛹𝑃𝑟𝑜𝑑𝑢𝑐𝑡⟩ = (𝛼𝑢
∗𝛼𝑢 + 𝛼𝑑

∗𝛼𝑑)( 𝛽𝑢
∗𝛽𝑢 + 𝛽𝑑

∗𝛽𝑑) = ⟨𝛹𝐴|𝛹𝐴⟩⟨𝛹𝐵|𝛹𝐵⟩ = 1. 

Also ⟨𝛹𝑃𝑟𝑜𝑑𝑢𝑐𝑡|𝛹𝑃𝑟𝑜𝑑𝑢𝑐𝑡⟩ = (⟨𝛹𝐴| ⊗ ⟨𝛹𝐵|)(|𝛹𝐴⟩ ⊗ |𝛹𝐵⟩) = ⟨𝛹𝐴| ⊗ ⟨𝛹𝐵|𝛹𝐴⟩ ⊗ |𝛹𝐵⟩. 

Now I want to recall the footnote of Susskind on page 193: “Sometimes we can change left-

to right ordering as well, but that requires more care”. 

So can we write:  

⟨𝛹𝑃𝑟𝑜𝑑𝑢𝑐𝑡|𝛹𝑃𝑟𝑜𝑑𝑢𝑐𝑡⟩ = (⟨𝛹𝐴| ⊗ ⟨𝛹𝐵|)(|𝛹𝐴⟩ ⊗ |𝛹𝐵⟩) = ⟨𝛹𝐴| ⊗ |𝛹𝐴⟩⟨𝛹𝐵| ⊗ |𝛹𝐵⟩ ? 

Does it appear that ⟨𝛹𝐴| ⊗ |𝛹𝐴⟩ = ⟨𝛹𝐴|𝛹𝐴⟩ = 1, and ⟨𝛹𝐵| ⊗ |𝛹𝐵⟩ = ⟨𝛹𝐵|𝛹𝐵⟩ = 1? 

When we use the column vector representation for |𝛹𝐴⟩and |𝛹𝐵⟩ : it seems to be all right. 

This is nice! 

The density matrix for the product state:  

with Eq.(L7.1) and the product state vector |𝛹𝑃𝑟𝑜𝑑𝑢𝑐𝑡⟩ we find for Alice’s density matrix: 

(
𝛼𝑢
∗𝛼𝑢 𝛼𝑑

∗𝛼𝑢
𝛼𝑢
∗𝛼𝑑 𝛼𝑑

∗𝛼𝑑
). The determinant for the eigenvalue 𝜆 is: 

 |
𝛼𝑢
∗𝛼𝑢 − 𝜆 𝛼𝑑

∗𝛼𝑢
𝛼𝑢
∗𝛼𝑑 𝛼𝑑

∗𝛼𝑑 − 𝜆
| = 0. Which produces a quadratic equation for 𝜆: 

𝜆(𝜆 − (𝛼𝑢
∗𝛼𝑢 + 𝛼𝑑

∗𝛼𝑑)) = 0,  

where use has been made of 𝛼𝑢
∗𝛼𝑢𝛼𝑑

∗𝛼𝑑 − 𝛼𝑑
∗𝛼𝑢𝛼𝑢

∗𝛼𝑑 = 0 . 

The one nonzero eigenvalue: 𝜆 = 1.  

 
3 An example of entanglement research is presented in the Science and Technology Section of The Economist 
August 15th 2020. The title: Quantum Mechanics, A flutter in time. “There are no butterflies in the quantum 
realm.” 
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The associated eigenvector, with general components ( 𝑎1, 𝑎2), is found in the following 

way: 

(
𝛼𝑢
∗𝛼𝑢 𝛼𝑑

∗𝛼𝑢
𝛼𝑢
∗𝛼𝑑 𝛼𝑑

∗𝛼𝑑
) (
𝑎1
𝑎2
) = 𝜆 (

𝑎1
𝑎2
) → (

𝑎1
𝑎2
) = (

𝛼𝑢
𝛼𝑑
). 

As Susskind says: “The same goes for Bob”. 

The wave function can be factorized. 

This follows from comparison of the composite notation for the product state in  

Eq.(6.5): 

|𝛹𝑝𝑟𝑜𝑑𝑢𝑐𝑡⟩ = 𝛼𝑢𝛽𝑢|𝑢𝑢⟩ + 𝛼𝑢𝛽𝑑|𝑢𝑑⟩ + 𝛼𝑑𝛽𝑢|𝑑𝑢⟩ + 𝛼𝑑𝛽𝑑|𝑑𝑑⟩,  

with the most general vector in the composite space of states on page 165: 

|𝛹⟩ = 𝜓𝑢𝑢|𝑢𝑢⟩ + 𝜓𝑢𝑑|𝑢𝑑⟩ + 𝜓𝑑𝑢|𝑑𝑢⟩ + 𝜓𝑑𝑑|𝑑𝑑⟩.  

So, for example 𝜓𝑢𝑑 = 𝛼𝑢𝛽𝑑. 

Another approach: let’s take 𝜓𝑢𝑑 

𝜓𝑢𝑑 = ⟨𝑢𝑑|𝛹𝑝𝑟𝑜𝑑𝑢𝑐𝑡⟩ = ⟨𝑢| ⊗⟨𝑑|𝛹𝐴⟩ ⊗ |𝛹𝐵⟩ = 𝛼𝑢⟨𝑑|𝛹𝐵⟩ = 𝛼𝑢𝛽𝑑.  

Take notice that use has been made of ⟨𝑢| multiplies with |𝛹𝐴⟩ and ⟨𝑑| with |𝛹𝐵⟩. To find 

out about this tensor multiplication, use the column vector presentation of |𝑢𝑑⟩ and 

|𝛹𝑝𝑟𝑜𝑑𝑢𝑐𝑡⟩ : ⟨𝑢𝑑|𝛹𝑝𝑟𝑜𝑑𝑢𝑐𝑡⟩ = (0 1 0 0) ∙ (

𝛼𝑢𝛽𝑢
𝛼𝑢𝛽𝑑
𝛼𝑑𝛽𝑢
𝛼𝑑𝛽𝑑

) = 𝛼𝑢𝛽𝑑. 

Expectation values: 

⟨𝜎𝑥⟩
2
+ ⟨𝜎𝑦⟩

2
+ ⟨𝜎𝑧⟩

2
= 1. 

We can prove this equality by straightforward applying the definition of ⟨𝜎𝑥⟩, ⟨𝜎𝑦⟩ and ⟨𝜎𝑧⟩: 

⟨𝜎𝑥⟩ = ⟨𝛹𝑝𝑟𝑜𝑑𝑢𝑐𝑡 |𝜎𝑥|𝛹𝑝𝑟𝑜𝑑𝑢𝑐𝑡⟩, etc.  

With |𝛹⟩ = 𝜓𝑢𝑢|𝑢𝑢⟩ + 𝜓𝑢𝑑|𝑢𝑑⟩ + 𝜓𝑑𝑢|𝑑𝑢⟩ + 𝜓𝑑𝑑|𝑑𝑑⟩ , the Pauli matrices and the 

Kronecker delta we find: 

⟨𝜎𝑥⟩ = 𝛼𝑑
∗𝛼𝑢 + 𝛼𝑢

∗𝛼𝑑, ⟨𝜎𝑦⟩ = 𝑖(𝛼𝑑
∗𝛼𝑢 − 𝛼𝑢

∗𝛼𝑑), and ⟨𝜎𝑧⟩ = 𝛼𝑢
∗𝛼𝑢 − 𝛼𝑑

∗𝛼𝑑.  

This results into: 

⟨𝜎𝑥⟩
2
+ ⟨𝜎𝑦⟩

2
+ ⟨𝜎𝑧⟩

2
= (𝛼𝑢

∗𝛼𝑢 + 𝛼𝑑
∗𝛼𝑑)

2 = 1. (Eq. 3.27).  

The same goes for Bob’s 𝜏 with 𝛼 replaced by 𝛽.  

Another approach for expectation values is using the density matrix 𝜌. We take for example 

⟨𝜎𝑥⟩.  

We already calculated the density matrix 𝜌𝐴𝑙𝑖𝑐𝑒 = (
𝛼𝑢
∗𝛼𝑢 𝛼𝑑

∗𝛼𝑢
𝛼𝑢
∗𝛼𝑑 𝛼𝑑

∗𝛼𝑑
).  

So,  

⟨𝜎𝑥⟩ = 𝑇𝑟  𝜌𝐴𝑙𝑖𝑐𝑒𝜎𝑥 = 𝑇𝑟 (
𝛼𝑢
∗𝛼𝑢 𝛼𝑑

∗𝛼𝑢
𝛼𝑢
∗𝛼𝑑 𝛼𝑑

∗𝛼𝑑
) (
0 1
1 0

) = 𝛼𝑑
∗𝛼𝑢 + 𝛼𝑢

∗𝛼𝑑. 

Correlation: ⟨𝜎𝑧𝜏𝑧⟩ − ⟨𝜎𝑧⟩⟨𝜏𝑧⟩ = 0.  

With the knowledge of ⟨𝜎𝑧⟩ = 𝛼𝑢
∗𝛼𝑢 − 𝛼𝑑

∗𝛼𝑢 we find: 

⟨𝜏𝑧⟩ = 𝛽𝑢
∗𝛽𝑢 − 𝛽𝑑

∗𝛽𝑑.  

This gives for ⟨𝜎𝑧⟩⟨𝜏𝑧⟩ = (𝛼𝑢
∗𝛼𝑢 − 𝛼𝑑

∗𝛼𝑑)(𝛽𝑢
∗𝛽𝑢 − 𝛽𝑑

∗𝛽𝑑). 

⟨𝜎𝑧𝜏𝑧⟩ = ⟨𝛹𝑝𝑟𝑜𝑑𝑢𝑐𝑡|𝜎𝑧𝜏𝑧|𝛹𝑝𝑟𝑜𝑑𝑢𝑐𝑡⟩ = (𝛼𝑢
∗𝛼𝑢 − 𝛼𝑑

∗𝛼𝑑)(𝛽𝑢
∗𝛽𝑢 − 𝛽𝑑

∗𝛽𝑑) = ⟨𝜎𝑧⟩⟨𝜏𝑧⟩. 

Hence 
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 ⟨𝜎𝑧𝜏𝑧⟩ − ⟨𝜎𝑧⟩⟨𝜏𝑧⟩ = 0, 

no correlation.  

Now the approach with the density matrix. I like to recall that for a product state: 

𝜌𝑝𝑟𝑜𝑑𝑢𝑐𝑡 = 𝜌𝐴𝑙𝑖𝑐𝑒⊗𝜌𝐵𝑜𝑏, and 𝜎𝑧⊗ 𝜏𝑧 = (

1    0     0  0
0 − 1   0  0
0    0 − 1  0
0    0     0   1

).  Now with all the elements 

known:   ⟨𝜎𝑧𝜏𝑧⟩ = 𝑇𝑟 𝜌𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝜎𝑧𝜏𝑧 =                                        

       =  𝑇 𝑟 𝜌𝐴𝑙𝑖𝑐𝑒 .⊗ 𝜌𝐵𝑜𝑏 (

1    0     0  0
0 − 1   0  0
0    0 − 1  0
0    0    0   1

)   = (𝛼𝑢
∗𝛼𝑢 − 𝛼𝑑

∗𝛼𝑑)(𝛽𝑢
∗𝛽𝑢 − 𝛽𝑑

∗𝛽𝑑). 

To find this, you must do a lot of bookkeeping. Let’s look again at : 

⟨𝜎𝑧𝜏𝑧⟩ = 𝑇𝑟 𝜌𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝜎𝑧𝜏𝑧 = 𝑇𝑟  𝜌𝐴𝑙𝑖𝑐𝑒⊗𝜌𝐵𝑜𝑏𝜎𝑧⊗ 𝜏𝑧 .   

We know 𝜎𝑧 to operate on Alice’s system and 𝜏𝑧 on Bob’s:  

⟨𝜎𝑧𝜏𝑧⟩ = 𝑇𝑟 𝜌𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝜎𝑧𝜏𝑧 = 𝑇𝑟  𝜌𝐴𝑙𝑖𝑐𝑒𝜎𝑧⊗𝜌𝐵𝑜𝑏𝜏𝑧,  and 

⟨𝜎𝑧⟩⟨𝜏𝑧⟩ = 𝑇𝑟  𝜌𝐴𝑙𝑖𝑐𝑒𝜎𝑧𝑇𝑟 𝜌𝐵𝑜𝑏𝜏𝑧 . 

We substitute for  𝜌𝐴𝑙𝑖𝑐𝑒𝜎𝑧 a general 2 × 2 matrix 𝐴 with elements 𝐴𝑖𝑗 and for 𝜌𝐵𝑜𝑏𝜏𝑧 the 

2 × 2 matrix  𝐵 with elements 𝐵𝑘𝑙. We know  𝑇𝑟 𝐴 ⊗ 𝐵 = 𝑇𝑟 𝐴  𝑇𝑟 𝐵. Then ⟨𝜎𝑧𝜏𝑧⟩ = 𝐴𝑖𝑖𝐵𝑘𝑘 

and ⟨𝜎𝑧⟩⟨𝜏𝑧⟩ = 𝐴𝑖𝑖𝐵𝑘𝑘. With Einstein’s summation convention: 

 ⟨𝜎𝑧𝜏𝑧⟩ − ⟨𝜎𝑧⟩⟨𝜏𝑧⟩ = 0, 

no correlation.  

Rap Sheet 2 State-Vector Maximum Entanglement 

This rap sheet is about a singlet state (maximum entanglement). 

Wanted for: Nonlocality, Complete Quantum Weirdness. 

Description: The complete system is fully characterized. There is no information about A’s -

or B’s subsystems. 

The state vector: 

 |𝛹𝑒𝑛𝑡⟩ = |𝑠𝑖𝑛𝑔⟩ =
1

√2
(|𝑢𝑑⟩ − |𝑑𝑢⟩),  𝜓𝑢𝑢 = 𝜓𝑑𝑑 = 0  

and in general 

 |𝛹⟩ = 𝜓𝑢𝑢|𝑢𝑢⟩ + 𝜓𝑢𝑑|𝑢𝑑⟩ + 𝜓𝑑𝑢|𝑑𝑢⟩ + 𝜓𝑑𝑑|𝑑𝑑⟩. 

So,  

 𝜓𝑢𝑑 = −𝜓𝑑𝑢 =
1

√2
. 

The normalization condition is: 𝜓𝑢𝑢
∗ 𝜓𝑢𝑢 + 𝜓𝑢𝑑

∗ 𝜓𝑢𝑑 + 𝜓𝑑𝑢
∗ 𝜓𝑑𝑢 + 𝜓𝑑𝑑

∗ = 1, page 166. 

The density matrix: 

For the full composite system 𝜌2 = 𝜌, and 𝑇𝑟(𝜌2). Consequently we can 𝜌𝑒𝑛𝑡 as a projection 

operator. Definition of: the full composite system? 

𝜌𝑒𝑛𝑡 = |𝛹𝑒𝑛𝑡⟩⟨𝛹𝑒𝑛𝑡|, with the amplitudes of the state vector, 0,
1

√2
, −

1

√2
, 0.   

With the column vector representation of the state vector: 

 |𝛹𝑒𝑛𝑡⟩ =
1

√2
(

0
1
−1
0

), 



74 
 

we obtain for 4 × 4 density matrix: 

 𝜌𝑒𝑛𝑡 =

(

 
 

0    0    0  0

0   
1

2
−
1

2
  0

0 −
1

2
   
1

2
  0

0    0    0  0)

 
 

.  Then 𝜌𝑒𝑛𝑡
2 = 𝜌𝑒𝑛𝑡. 

 

Note: top page 208, bullet point, “For a mixed or entangled state 𝜌2 ≠ 𝜌, and 𝑇𝑟(𝜌2) < 1”? 

And, 𝑇𝑟 𝜌𝑒𝑛𝑡 = 𝑇𝑟  𝜌𝑒𝑛𝑡
2 = 1. What is going on here? A full composite system is not a mixed 

or entangled system? However, this rap sheet is about maximum entanglement. Is there a 

difference between entanglement and maximum entanglement? 

Page 201: “Indeed, only in the very special case of a product state will 𝜌 have the form of a 

projection operator”. 

 

The density matrix of A’s subsystem, with help of Eq.  (L7.1): 

  𝜌𝑎𝑎′ = ∑ 𝜓𝑎′𝑏
∗ 𝜓𝑎𝑏 𝑏 , we find for the elements of A’s density matrix: 𝜌𝑢𝑢 = 𝜌𝑑𝑑 =

1

2
, and 

𝜌𝑢𝑑 = 𝜌𝑑𝑢 = 0. So,  

𝜌𝐴𝑙𝑖𝑐𝑒 = (

1

2
0

0
1

2

) and 𝜌𝐴
2 = (

1

4
0

0
1

4

); 𝑇𝑟 𝜌𝐴𝑙𝑖𝑐𝑒
2 < 1. 

 𝜌𝐴 =
1

2
(
1 0
0 1

). The density matrix is proportional to the unit matrix with eigenvalues that 

add up to 1. Each measurement outcome is equally likely. 

Wave function: 

𝜓𝑢𝑑 = −𝜓𝑑𝑢 =
1

√2
, cannot be factorized.  

Exercise 6.3: |𝑠𝑖𝑛𝑔⟩ cannot be written as a product state. Eq. 6.5: 

 |𝛹𝑝𝑟𝑜𝑑𝑢𝑐𝑡⟩ = 𝛼𝑢𝛽𝑢|𝑢𝑢⟩ + 𝛼𝑢𝛽𝑑|𝑢𝑑⟩ + 𝛼𝑑𝛽𝑢|𝑑𝑢⟩ + 𝛼𝑑𝛽𝑑|𝑑𝑑⟩,    

represents the product state. We compare this equation with the expression for |𝑠𝑖𝑛𝑔⟩ and 

find 𝛼𝑢 and/or 𝛽𝑢 is zero. Also 𝛼𝑑 and/or 𝛽𝑑 is zero. Consequently, the state |𝑠𝑖𝑛𝑔⟩ cannot 

be written as a product state. 

Expectation values: 

⟨𝜎𝑥⟩ = ⟨𝜎𝑦⟩ = ⟨𝜎𝑧⟩ = 0, on page 173 and 174 Susskind give the proof of the numerical 

values of these expectation values. And he concludes: “Needless to say, the same is true for 

the expectation value of 𝜏”.  

⟨𝜏𝑥𝜎𝑥⟩ = ⟨𝜏𝑦𝜎𝑦⟩ = ⟨𝜏𝑧𝜎𝑧⟩ = −1, from page 177 and 178 we learned: 

𝜏𝑥𝜎𝑥|𝑠𝑖𝑛𝑔⟩ = 𝜏𝑦𝜎𝑦|𝑠𝑖𝑛𝑔⟩ = 𝜏𝑧𝜎𝑧|𝑠𝑖𝑛𝑔⟩ = −|𝑠𝑖𝑛𝑔⟩, then  

⟨𝑠𝑖𝑛𝑔|𝜏𝑥𝜎𝑥|𝑠𝑖𝑛𝑔⟩ = ⟨𝜏𝑥𝜎𝑥⟩ = ⟨𝑠𝑖𝑛𝑔|𝜏𝑦𝜎𝑦|𝑠𝑖𝑛𝑔⟩ = ⟨𝜏𝑦𝜎𝑦⟩ = ⟨𝑠𝑖𝑛𝑔|𝜏𝑧𝜎𝑧|𝑠𝑖𝑛𝑔⟩ = ⟨𝜏𝑧𝜎𝑧⟩ =

−⟨𝑠𝑖𝑛𝑔|𝑠𝑖𝑛𝑔⟩ = −1.  

Then the correlation ⟨𝜎𝑧𝜏𝑧⟩ − ⟨𝜎𝑧⟩⟨𝜏𝑧⟩ = −1. Reminder: 𝜎𝑧 and 𝜏𝑧 are just one and the same 

operator. 

Rap Sheet 3 State-Vector Partial Entanglement 

The near-singlet(ns) state vector (Partial Entanglement). 

Incomplete information about the composite system and about the subsystems. There is 
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some information about the composite system, and some about each subsystem. 

The state vector: |𝛹𝑛𝑠⟩ = √0.6|𝑢𝑑⟩ − √0.4|𝑑𝑢⟩, 

 𝜓𝑢𝑢 = 𝜓𝑑𝑑 = 0 and 𝜓𝑢𝑑 = √0.6 and 𝜓𝑑𝑢 = −√0.4. 

The normalization condition is: 𝜓𝑢𝑢
∗ 𝜓𝑢𝑢 + 𝜓𝑢𝑑

∗ 𝜓𝑢𝑑 + 𝜓𝑑𝑢
∗ 𝜓𝑑𝑢 + 𝜓𝑑𝑑

∗ = 1. 

The density matrix: 

For the composite system 𝜌𝑛𝑠 = |𝛹𝑛𝑠⟩⟨|𝛹𝑛𝑠|, with amplitudes of the state vector: 

0, √0.6, −√0.4, 0,  

 |𝛹𝑛𝑠⟩ = (

0

√0.6

−√0.4
0

) , 

and assuming 𝜌𝑛𝑠 = |𝛹𝑛𝑠⟩⟨|𝛹𝑛𝑠| 

 𝜌𝑛𝑠 = (

0        0            0    0

0    0.6 − √0.24  0

0 − √0.24    0.4  0
0         0          0    0

).  

Then,  

𝜌𝑛𝑠
2 ≠ 𝜌𝑛𝑠 and 𝑇𝑟 𝜌𝑛𝑠

2 < 1. 

 

For A’s subsystem, with help of Eq. (L7.1): 𝜌𝑎𝑎′ = ∑ 𝜓𝑎′𝑏
∗ 𝜓𝑎𝑏 𝑏 , and the expansion on page 

211, A’s density matrix: 

𝜌𝐴 = (
0.6 0
0 0.4

) → 𝑇𝑟 𝜌𝐴 = 1  and, 

𝜌𝐴
2 = (

0.36 0
0 0.16

) → 𝑇𝑟 𝜌𝐴
2 < 1. 

Wave function: 

Compare the state vector |𝛹𝑛𝑠⟩ = √0.6|𝑢𝑑⟩ − √0.4|𝑑𝑢⟩, with the product state vector  

|𝛹𝑝𝑟𝑜𝑑𝑢𝑐𝑡⟩ = 𝛼𝑢𝛽𝑢|𝑢𝑢⟩ + 𝛼𝑢𝛽𝑑|𝑢𝑑⟩ + 𝛼𝑑𝛽𝑢|𝑑𝑢⟩ + 𝛼𝑑𝛽𝑑|𝑑𝑑⟩,  and we find 𝛼𝑢 and/or 𝛽𝑢 is 

zero. Also 𝛽𝑢 and/or 𝛽𝑑 is zero. Consequently, the state |𝛹𝑛𝑠⟩ cannot be written as a product 

state and not be factorized. 

Expectation values, with Eq.(7.4) 

 ⟨𝜎𝑧⟩ = ⟨𝛹𝑛𝑠|𝜎𝑧 |𝛹𝑛𝑠⟩ = ⟨𝛹𝑛𝑠|𝜎𝑧⊗ 𝐼 |𝛹𝑛𝑠⟩ = 

 = (0, √0.6, −√0.4, 0) (

1 0
0 1

0 0
0 0

0 0
0 0

−1 0
   0 −1

)(

0

√0.6

−√0.4
0

) = 0.6 − 0.4 = 0.2 . 

 〈𝜎𝑥〉 = ⟨𝛹𝑛𝑠|𝜎𝑥 |𝛹𝑛𝑠⟩ = ⟨𝛹𝑛𝑠|𝜎𝑥⊗ 𝐼 |𝛹𝑛𝑠⟩ =  

 = (0, √0.6, −√0.4, 0) (

0 0
0 0

1 0
0 1

1 0
0 1

0 0
  0 0

)(

0

√0.6

−√0.4
0

) = 0. 

Likewise, ⟨𝜎𝑦⟩ = 0. 

 ⟨𝜏𝑧⟩ = ⟨𝛹𝑛𝑠|𝜏𝑧 |𝛹𝑛𝑠⟩ = ⟨𝛹𝑛𝑠|𝐼 ⊗ 𝜏𝑧 |𝛹𝑛𝑠⟩ = −0.2 .  

Furthermore ⟨𝜏𝑥⟩ = ⟨𝜏𝑦⟩ = 0. 
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𝜏𝑧⊗𝜎𝑧 = (

1    0     0  0
0 − 1   0  0
0    0 − 1  0
0    0    0   1

),  

gives with 𝜌𝑛𝑠 = (

0        0            0    0

0    0.6 − √0.24  0

0 − √0.24    0.4  0
0         0          0    0

) :  

⟨𝜏𝑧𝜎𝑧⟩ = 𝑇𝑟 𝜌𝑛𝑠 𝜏𝑧⊗𝜎𝑧 = −1. 

𝜏𝑥⊗𝜎𝑥 = (

0  0  0  1
0  0  1  0
0  1  0  0
1  0  0  0

) , 

gives with 𝜌𝑛𝑠: 

 ⟨𝜏𝑥𝜎𝑥⟩ = 𝑇𝑟 𝜌𝑛𝑠 𝜏𝑥⊗𝜎𝑥 = −2√0.24. 

Or  

 ⟨𝜏𝑥𝜎𝑥⟩ = ⟨𝛹𝑛𝑠|(𝐼 ⊗ 𝜏𝑥)(𝜎𝑥⊗ 𝐼) |𝛹𝑛𝑠⟩. 

Caveat: 𝜌𝑛𝑠𝜏𝑥 ⊗𝜎𝑥  is not an Hermitian operator! 

Correlation: 

We have all the building blocks. In addition, ⟨𝜏𝑧𝜎𝑧⟩ = ⟨𝜎𝑧𝜏𝑧⟩. So ⟨𝜎𝑧𝜏𝑧⟩ − ⟨𝜎𝑧⟩⟨𝜏𝑧⟩ = −0.96. 

The correlation is between −1 and +1, or more accurate 0 < |⟨𝜏𝑧𝜎𝑧⟩| < 1. 

So, for a partially entangled state the 0 < |correlation | < 1. 

Exercises 7.11 and 7.12 are included in the rap sheets. 

7.12 Definitions 

- mixed state, when the density matrix of that state is a mix of several projection operators. 

- single state, 

- composite state, 

- pure state, when the density matrix corresponds to a single state, it is a projection operator 

that projects onto that state. Furthermore: 𝜌2 = 𝜌, and 𝑇𝑟(𝜌2) = 1. 

- entangles state, 

- maximum entangled state, |correlation | = 1. 

- partial entangled state, 0 < |correlation | < 1. 

- composite system, 

- full composite system, 

- subsystem, 

- mixed or entangled state, 𝜌2 ≠ 𝜌, and 𝑇𝑟(𝜌2) < 1. 

Some definitions are needed or clarifications? 

 

 

Lecture 8. Particles and Waves. 
 
This Lecture is about: “… the nonclassical logical principles that govern their behaviour [of 
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particles and waves]”. 

Linear operators and the state of a particle are discussed.  

8.1 Mathematical Interlude: Working with Continuous Functions 

8.1.1 Wave Functions Review 

First the results of Lecture 5 are reviewed. 

To remember, at the top of page 237: “But notice: the specific form of 𝜓(𝜆) depends on the 

specific observable 𝑳 that we initially choose”.  

Remark: 

In Lecture 8.1 Susskind writes, bottom page 237: ” You can think of the wave function in two 

ways. First, it is the set of components of the state vector in a basis. These components can 

be stacked up to form a column vector”. See for example Lecture 1.9.3. These components 

are called the probability amplitudes or wave functions. Susskind continues: “Another way to 

think of the wave function is a function of λ. If you specify any allowable value of λ, the 

(wave)function 𝜓(𝜆) produces a complex number. …….When thought of in this way, linear 

operators become operations that are applied to functions, and give back new functions”. I 

would have preferred a rigorous proof. We come back to that later. 

Reminder, classical and non-classical: 

 𝑃(𝜆) = 𝜓∗(𝜆)𝜓(𝜆). 

 

8.1.2 Functions as Vectors 

In this Lecture, Susskind explained why “we have to expand the idea of vectors to include 

functions”. 

At the bottom of page 239 and at the top of page 240, Susskind summarized the axioms that 

define a complex vector space. Complex functions satisfy all of them (See Lecture 1.9.1). 

To replace sums by integrals is to find a particle in a small segment 𝑑𝑥. 

Eq.(8.2) represents the continuous representation of the inner product. 

Probability densities replace probabilities. 

Dirac delta functions replace Kronecker delta. 

The Dirac delta function is introduced, pages 242-245, and defined by Eq.(8.4). 

In Chapter III on Representation, Dirac explained the need for the 𝛿 function to deal with 

certain infinities. Feynman Vol III 16-4  used the 𝛿 in the section on normalization of the 

states 𝑥. Furthermore Feynman is additional instructive reading about the position operator. 

In Chapter 20 Operators of Vol III Feynman presented an example of integration by parts in 

the section on The momentum operator.   

8.1.3 Integration by Parts 

This is a strong tool to evaluate integrals since the wave function must go to zero at infinity. 

8.1.4 Linear Operators 

Susskind rehearsed the concept of operators. 

As an example the operation: multiply by 𝑥 represented by the operator 𝑿 and the 

operation 𝑑/𝑑𝑥 represented by the operator 𝑫. 



78 
 

Exercise 8.1 Prove the position operator and the differentiation operator to be linear. 
Prove that 𝑿 and 𝑫 are linear operators. 

• Operator acts on a function giving another function. 

• Operator acts on the sum of two functions giving the sum of the individual functions. 

• Operator acts on a complex numerical multiple of a function giving the same multiple of the original 
results. 

See page 53: 
𝑴|𝐴⟩ = |𝐵⟩, 
𝑴𝑧|𝐴⟩ = 𝑧|𝐵⟩ and 
𝑴(|𝐴⟩ + |𝐵⟩) = 𝑴|𝐴⟩ + 𝑴|𝐵⟩. 
As an example for a function we look at Eq.(8.5): 
𝑋𝜓(𝑥) = 𝑥𝜓(𝑥). Assume 𝜓(𝑥) to be: 𝜓(𝑥) = 𝑓(𝑥) + 𝑔(𝑥), then  

𝑿𝜓(𝑥) = 𝑿(𝑓(𝑥) + 𝑔(𝑥)) = 𝑥(𝑓(𝑥) + 𝑔(𝑥)) = 𝑥𝑓(𝑥) + 𝑥𝑔(𝑥).  
 

 

Remark: 

In this Lecture, Susskind showed the operator 𝑫 not to be Hermitian. Instead of 𝑫, he 

introduced – 𝑖ħ𝑫. Plugging this operator in the Eqs.(8.7) and (8.9) , we find, 

⟨𝛹|−𝑖ħ𝑫|𝛷⟩ = −𝑖ℏ∫𝜓∗
𝑑𝜙(𝑥)

𝑑𝑥
𝑑𝑥,  

and 

 ⟨𝛷|−𝑖ħ𝑫|𝛹⟩ = −𝑖ℏ∫𝜙∗
𝑑𝜓(𝑥)

𝑑𝑥
𝑑𝑥. 

Integration by parts: 

 ⟨𝛷|−𝑖ħ𝑫|𝛹⟩ = 𝑖ℏ∫𝜓(𝑥)
𝑑𝜙∗(𝑥)

𝑑𝑥
𝑑𝑥 = ⟨𝛹|−𝑖ħ𝑫|𝛷⟩∗ 

  Showing – 𝑖ħ𝑫 to be Hermitian. 

8.2 The State of a Particle 
First the state in classical mechanics is explained. Based on classical mechanics, a state in 

quantum mechanics is proposed. Susskind: This is incorrect, page 251. It is not position and 

momentum. However, it is position or momentum: The two do not commute. A result of 

experimental observations. 

8.2.1 The Eigenvalues and Eigenvectors of Position 

Susskind starts with the operator 𝑿, the observable of position, and looks for the 

eigenvectors and eigenvalues of the eigen-equation: 

𝑿|𝛹⟩ = 𝑥0|𝛹⟩,  

where 𝑥0 is the eigenvalue.  

Then: “In terms of wave functions, this becomes: 

 𝑥𝜓(𝑥) = 𝑥0𝜓(𝑥), Eq.(8.11)”.  

I refer to the above remark on wave functions. We learned that for a basis |𝑥⟩ the wave 

function (or probability amplitude) is found from the inner products of the state-vector onto 

the eigenvectors (page 237) . Can we apply this to the above eigen-equation (8.11)?  

Well, let’s have a look: 𝑥 is a real number and 𝑿 does not operate on 𝑥. This does not apply 

to the operator 𝑫! So let’s multiply ⟨𝑥| into the eigen-equation: 𝑿|𝛹⟩ = 𝑥0|𝛹⟩, we have  

⟨𝑥|𝑿|𝛹⟩ = ⟨𝑥|𝑥0|𝛹⟩. 

Then we find 𝑿⟨𝑥|𝛹⟩ = 𝑥0⟨𝑥|𝛹⟩. With the definition of the wave function, ⟨𝑥|𝛹⟩ = 𝜓(𝑥), 

𝑿⟨𝑥|𝛹⟩ = 𝑿𝜓(𝑥) = 𝑥0𝜓(𝑥).  



79 
 

Eq. (8.5), 

 𝑿𝜓(𝑥) = 𝑥𝜓(𝑥),  

changes the eigen-equation into 

 𝑥𝜓(𝑥)= 𝑥0𝜓(𝑥) , Eq.(8.11).  

I feel a bit more comfortable with the above approach. 

Remember in the discrete situation we would have written for 𝜓(𝑥): 𝜓𝑥. 

On page 253, the workings of the Dirac delta function is shown, leading to the conclusion: 

 𝜓(𝑥) = 𝛿(𝑥 − 𝑥0). 

Note:On page 254, in the middle, 𝑑𝑥  is missing in the integral:∫ 𝛿(𝑥 − 𝑥0)𝜓(𝑥)𝑑𝑥
∞

−∞
. A 

typo. 

Susskind writes: “By the definition of delta functions given in Eq.(8.4), this integral evaluates 

to ⟨𝑥0|𝛹⟩ = 𝜓(𝑥0)”. I prefer to start with ⟨𝑥0|𝛹⟩ = 𝜓(𝑥0) and follow Feynman. We have by 

the definition of 𝛿(𝑥): 

𝜓(0) = ∫ 𝛿(𝑥)𝜓(𝑥)𝑑𝑥. Now change the argument of the delta function from 𝑥 to 𝑥 − 𝑥0 

and we obtain: ∫𝛿(𝑥 − 𝑥0)𝜓(𝑥)𝑑𝑥 = 𝜓(𝑥0). 

On the other hand, Susskind derived Eq. (8.13), 

 ⟨𝑥|𝛹⟩ = 𝜓(𝑥), 

by using the Dirac delta function. In this way, he proved the assumption 𝑥𝜓(𝑥)= 𝑥0𝜓(𝑥)  to 

represent the eigen-equation 𝑿|𝛹⟩ = 𝑥0|𝛹⟩.  

Now something different. The position  eigenfunction with eigenvalue 𝑥0  is:                  

𝜓(𝑥) = 𝛿(𝑥 − 𝑥0). 

What does this tell us about the expectation value of 𝑿? 

Well,  we know: 〈𝑿〉 = ∫𝜓∗(𝑥)𝑥𝜓(𝑥)𝑑𝑥 = ∫𝛿(𝑥 − 𝑥0)𝑥𝛿(𝑥 − 𝑥0)𝑑𝑥 . 

We expect this expectation value to be 𝑥0, the eigenvalue of the operator. 

So ∫ 𝛿(𝑥 − 𝑥0)𝑥𝛿(𝑥 − 𝑥0)𝑑𝑥 = 𝑥0 . 

Furthermore, the normalization condition is: ∫𝛿(𝑥 − 𝑥0)𝛿(𝑥 − 𝑥0)𝑑𝑥 = 1 . 

This condition is given by Dirac, page 60, Eq. (10), by setting 𝑏 = 𝑎 = 𝑥0 and make use of      

Eq. (6), on the same page, 𝛿(−𝑥) = 𝛿(𝑥). 

𝛿(𝑥 − 𝑥0)𝛿(𝑥 − 𝑥0) has the same character as 𝛿(𝑥 − 𝑥0): 

 𝛿(𝑥 − 𝑥0)𝛿(𝑥 − 𝑥0) = 0 for  𝑥 ≠ 𝑥0 ,  

and becomes sufficient large for 𝑥 = 𝑥0 and,  

so, ∫ 𝛿(𝑥 − 𝑥0)𝛿(𝑥 − 𝑥0)𝑑𝑥 = 1. 

The least we can say: 𝛿(𝑥 − 𝑥0)𝛿(𝑥 − 𝑥0) ∝ 𝛿(𝑥 − 𝑥0), 

since we have ∫𝛿(𝑥 − 𝑥0)𝛿(𝑥 − 𝑥0)𝑑𝑥 = 1 = ∫𝛿(𝑥 − 𝑥0)𝑑𝑥. 

Hence: 

(𝛿(𝑥 − 𝑥0))
2 ≡ 𝛿(𝑥 − 𝑥0). With " ≡ " I mean identical behaviour. 

Dirac did not mention this. I assume he considered this to be trivial. 

 In addition we can write (𝛿(𝑥 − 𝑥0))
3 = 𝛿(𝑥 − 𝑥0)(𝛿(𝑥 − 𝑥0))

2 ≡ 𝛿(𝑥 − 𝑥0)𝛿(𝑥 − 𝑥0) ≡

𝛿(𝑥 − 𝑥0). With proof by induction, we find for 𝑛 ∈ ℕ : (𝛿(𝑥 − 𝑥0))
𝑛 ≡ 𝛿(𝑥 − 𝑥0). 

Basically I consider the above derivation not to be elegant. More or less we imply  〈𝑿〉 = 𝑥0. 

Can we do better? 

Let’s replace 𝑥 by 𝑦 + 𝑥0: 

〈𝑿〉 = ∫ 𝛿(𝑦)(𝑦 + 𝑥0)
∞

−∞
𝛿(𝑦)𝑑𝑦 = ∫ 𝛿(𝑦)𝑦𝛿(𝑦)𝑑𝑦 +

∞

−∞
𝑥0 ∫ 𝛿(𝑦)𝛿(𝑦)𝑑𝑦

∞

−∞
 . 
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For the first integral on the right hand side we use Dirac’s toolkit, page 60- Eq. (7): 

𝑦𝛿(𝑦) = 0.  

The second integral on the right-hand side gives with the normalization condition: 𝑥0. 

Consequently: 〈𝑿〉 = 𝑥0.   

More concise : 〈𝑿〉 = 〈𝑦 + 𝑥0〉 = 〈𝑦〉+ 𝑥0 = 𝑥0.   

8.2.2 Momentum and Its Eigenvectors 

The momentum operator 𝑷 is presented in Eq.(8.14), the relation between the momentum 

operator 𝑷  and the differentiation operator 𝑫. 

The eigen-equation, in vector notation, Eq.(8.16): 

 𝑷|𝛹⟩ = 𝑝|𝛹⟩  or  

using the wave function: 

 −𝑖ħ
𝑑𝜓(𝑥)

𝑑𝑥
= 𝑝𝜓(𝑥) or 

 
𝑑𝜓𝑝(𝑥)

𝑑𝑥
=
𝑖𝑝

ħ
𝜓𝑝(𝑥).          (L.8.1) 

The subscript 𝑝 is a reminder that 𝜓𝑝(𝑥) is a wave function of 𝑷 with the specific eigenvalue 

𝑝 in the position representation. At the bottom of page 256 Susskind denoted 𝜓𝑝(𝑥) to be 

the eigenvector of 𝑷. I consider that to be a bit confusing, it is about the wave function. 

Finally, the expression for  𝜓𝑝(𝑥) is obtained by integrating (L.8.1), page 256, 

 𝜓𝑝(𝑥) = 𝐴𝑒
𝑖𝑝𝑥

ħ .          (L.8.2) 

The factor 𝐴 is found by normalizing (L.8.2). Susskind: “Normalizing the eigenvectors is a 

more subtle operation, but the result is simple”.  

 𝐴 = 1/√2𝜋 . 

Subtle indeed.  

In the citation of Feynman, I used the Susskind notation: 

Feynman: “There are several ways the normalization can be adjusted. We will choose one of 

them which we think to be the most convenient, although that may not be apparent to you 

just now” , Vol III, 16-3.  

Then, Feynman looked at an example- for instance one in which a particles localized in a 

certain region around 𝑥 = 0. Feynman choses a sort of smeared out delta function and 

obtained an expression for 𝜓𝑝(𝑥). You can cheque the normalization condition by plugging 

this expression into the probability distribution |𝜓𝑝̃(𝑝)|
2 𝑑𝑝

2πℏ
 and integrate. You will find this 

to be equal to 1. Feynman: “With the normalization chosen for the probability distribution 

the proper constant 𝐴 (Susskind notation) is just 1”. 

Maybe we need a dialogue Feynman-Susskind, one like the dialogue Democritus- Lederman ( 

The God Particle)? Of some help could be the integral representation of the 𝛿-function:         

𝛿(𝑦) =
1

2𝜋
∫ 𝑒𝑖𝑘𝑦𝑑𝑘
∞

−∞
, (Chisholm and Morris).  

Well, let’s find out whether this helps us to find out about 𝐴 (Noordzij, 2). 

We define two eigenvalues 𝑝 and 𝑝′. 

Now with the integral representation of the delta function, 𝑘 = 𝑥 and 𝑦 = (𝑝 − 𝑝′)/ħ  : 
1

2𝜋
∫ 𝑒𝑖𝑥(𝑝−𝑝

′)/ħ𝑑𝑥
∞

−∞
= 𝛿[(𝑝 − 𝑝′)/ℏ] .  

Well, you see it coming:  
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1

2𝜋
∫ 𝑒𝑖𝑥(𝑝−𝑝

′)/ħ𝑑𝑥
∞

−∞
= ∫

1

√2𝜋
𝑒−𝑖𝑥(𝑝

′) 1

√2𝜋
𝑒𝑖𝑥(𝑝)/ħ𝑑𝑥

∞

−∞
=  𝛿[(𝑝 − 𝑝′)/ℏ]. 

The integral represents the product of a plane wave eigenfunction with eigenvalue 𝑝 and a 

complex conjugate  wave eigenfunction with eigenvalue 𝑝′. This expression shows the 

compliance with the normalization and orthogonality condition. The delta function on the 

right-hand side can be written as, Dirac(page 60), ℏ 𝛿(𝑝 − 𝑝′).  

It is a kind of magic, the Dirac 𝛿-function. To have a proper delta function on the right-hand 

side, take note we find in this way 𝐴 to be 1/√2𝜋ħ. See the exercise below on normalization 

with Dirac Delta Function Approximation and the “Feynman factor” 
1

2𝜋ℏ
 . Fitzpatrick also 

obtained the factor 1/√2𝜋ħ. What about the “dimensionality” of the wave function? I leave 

that question. 

 Mahan indeed shows how to obtain the above constant 𝐴 with help of delta-function 

normalization. However,  using the plane wave function. There is no need for that.  

We will do an additional exercise on normalization, next page. 
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Exercise  on normalization with Dirac Delta Function Approximation 
We will use the approximation of Susskind 𝛿(𝑥) =

𝑛

√𝜋
𝑒−(𝑛𝑥)

2
, pages 243-244, Fig.8.1.  

So, 

 𝜓(𝑥) =
𝑛

√𝜋
𝑒−(𝑛𝑥)

2
 , 

an approximation with the particle localized in a certain region around 𝑥 = 0.  
However, this wave function is not normalized. We must plug in a constant, 𝐵 say, to be flexible. Then,    

 𝜓(𝑥) = 𝐵
𝑛

√𝜋
𝑒−(𝑛𝑥)

2
.   

With the normalization condition ∫ 𝜓∗(𝑥)𝜓(𝑥)𝑑𝑥 = 1
∞

−∞
,  

we find for 𝐵: 𝐵 = (
√2𝜋

𝑛
)1/2 and 𝜓(𝑥) = (𝑛√

2

𝜋
)1/2𝑒−(𝑛𝑥)

2
.  

In this case we can still choose a number for 𝑛. For 𝐵 = 1, the normalization condition gives: 𝑛 = √2𝜋. The 
number 𝑛 is fixed.       
Figure 8.1 gives an idea what this approximation looks like. 
Now we have: 

  𝜓𝑝(𝑥) = 𝐴𝑒
𝑖𝑝𝑥

ħ ,  and we want to find 𝐴 by normalization. We start with the wave function in the 

momentum representation (page 263): 

 𝜓̃(𝑝) = ∫𝑑𝑥⟨𝑝|𝑥⟩ ⟨𝑥|𝛹⟩.  

⟨𝑝|𝑥⟩ = 𝜓𝑝(𝑥) = 𝐴𝑒
𝑖𝑝𝑥

ħ  and we use for ⟨𝑥|𝛹⟩ the delta function approximation, the result for 𝜓̃(𝑝) is : 

 𝜓̃(𝑝) = 𝐴(𝑛√
2

𝜋
)1/2 ∫ exp (−

𝑖𝑝𝑥

ħ

∞

−∞
− (𝑛𝑥)2)𝑑𝑥.  

This can be written as: 

𝐴(
1

𝑛
√
2

𝜋
)1/2exp (−(

𝑝

2𝑛ħ
)2) ∫ exp (−(𝑛𝑢)2)𝑑𝑛𝑢 =

∞

−∞
 𝐴(

1

𝑛
√
2

𝜋
)1/2exp (− (

𝑝

2𝑛ħ
)2) √𝜋 = 𝜓̃(𝑝). 

(Feynman citation: “The mathematicians would probably object to the way we got there, but the result is 
nevertheless correct”.)  

Feynman used for the Dirac Delta Function Approximation: ψ(x) = K ∙ exp (− (
x

2σ
)
2

).  σ is a measure for 

the half-width of the curve and K a constant to be determined by normalization. The remark by Feynman 
about mathematicians has something to do with integrating a complex function. 

Now ∫ 𝜓̃∗(𝑝)𝜓̃
∞

−∞
(𝑝)𝑑𝑝 = 1.  

Then 𝐴2
√2𝜋

𝑛
∫ exp (−2
∞

−∞
(
𝑝

2𝑛ħ
)2)𝑑𝑝 = 1.  

This leads to: 

𝐴 = (
1

2ħ√𝜋
)1/2 . Well, this is not near 

1

√2𝜋
.  

What about the dimension of 𝐴? This cannot be correct. Feynman, to find 𝐴, used for the probability 

distribution |𝜓̃(𝑝)|2
𝑑𝑝

ħ
. Then, with the normalisation condition ∫ 𝜓̃∗(𝑝)𝜓̃

∞

−∞
(𝑝)

𝑑𝑝

2𝜋ħ
= 1, 𝐴 = 1.  

However, Susskind found 𝐴 =
1

√2𝜋
. When we take for the probability distribution |𝜓̃(𝑝)|2

𝑑𝑝

ħ
, we finally 

obtain 
1

√2𝜋
. The Feynman factor 

1

2𝜋ℏ
 is found by trial and error? Or is it the magic of the genius? For sure,  I 

found the factor 
1

ℏ
 by trial and error. 

Again: subtle. 
 

On top of page 258 Susskind writes: “……Eq. (8.18). The second equation is simply the 

complex conjugate of the first. These results are easy to verify if you keep in mind that |𝑥⟩ is 

represented by a delta function”. Verify what? That the two functions are the complex 

conjugate of each?  

 ⟨𝑥|𝑝⟩ = ⟨𝑝|𝑥⟩∗. 

Or we need to verify 𝜓𝑝(𝑥) =
1

√2𝜋
𝑒
𝑖𝑝𝑥

ħ ?  
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Well, in general ⟨𝛷|𝛹⟩ = ∫ ⟨𝛷|𝑥⟩⟨𝑥|𝛹⟩𝑑𝑥
∞

−∞
.  

Then,  

 ⟨𝑥0|𝑝⟩ = ∫ 𝛿(𝑥 − 𝑥0)
∞

−∞
𝜓𝑝(𝑥)𝑑𝑥 = 𝜓𝑝(𝑥0) =

1

√2𝜋
𝑒
𝑖𝑝𝑥0
ħ .  

Since this applies for any 𝑥0:    𝜓𝑝(𝑥) = ⟨𝑥|𝑝⟩ =
1

√2𝜋
𝑒
𝑖𝑝𝑥

ħ . 

Furthermore on page 258, point 2. Susskind writes: “We have been using the symbol 𝜓 for 

both position and momentum eigenstates.” I still think the symbol for eigenstates is 𝛹. 

On the pages 258-260, Susskind reflects on the wave function, momentum, and wavelength. 

8.3 Fourier Transforms and the Momentum Basis 
The importance of the wave function for determining the probability of finding a particle at 

position 𝑥 is mentioned on page 260. Again, this presentation was proposed by Born. 

So, completely similar, the probability of a particle having momentum 𝑝 is obtained. 

This is presented in Eq. (8.19).  

I prefer the notation: 𝑃(𝑝) = |⟨𝑝|𝛹⟩|2.  

And Eq.(8.20): 𝜓̃(𝑝) = ⟨𝑝|𝛹⟩. See top of page 263. 

As mentioned by Susskind, there is a relation between the momentum representation and 

the position representation. Both represent the state-vector: |𝛹⟩ . 

8.3.1 Resolving the Identity. 

The trick is resolving the identity using the identity operator 𝑰, derived for the discrete case, 

for the continuous case. 

In Eqs. (8.21) and (8.22) , the identity operator is presented twice: in the two basis vectors. 

On page 263, Susskind elegantly presented the transformation of a wave function in the 

position representation into the wave function in the momentum representation. 

On page 264 their relationship with Fourier analysis is mentioned. 

8.4 Commutators and Poisson Brackets. 
Two important principles about commutators: 

- The connection between classical and quantum mechanics. 

- Uncertainty. 

Susskind discussed the connection between quantum mechanics and classical mechanics. It 

is about commutators and Poisson brackets to some extent represented by  

Eq. (8.26), based on Eq.(4.21), 

 [𝑳,𝑴] ↔ 𝑖ħ{𝐿,𝑀}. 𝑳 and 𝑴 are operator symbols. 

Susskind: “….we’re reminded that the equations for quantum motion strongly resemble their 

classical equivalents.” 

In Eq.(8.29) the commutator [𝑿, 𝑷] is derived from Eqs. (8.27) and (8.28). 

 

In Chapter IV On Quantum Conditions, Dirac gave the expression 𝑢𝑣 − 𝑣𝑢 = 𝑖ħ{𝑢, 𝑣}, Eq. 7. 

Here we used the Susskind notation for Poisson Brackets. Furthermore in Eq. 7, 𝑢 and 𝑣 are 

dynamical variables. As defined by Dirac, dynamical variables whose eigenstates are a 

complete set are observables. For the canonical coordinate 𝑥 and canonical momentum 𝑝, 

Eq. 7 of Dirac can be written with the notation of Susskind as [𝑥, 𝑝] = 𝑖ħ{𝑥, 𝑝}.  
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Page 268, {x, p} = 1  and consequently [x, p] = iħ.  Again, square brackets represent a 

commutator.  

 

8.5 The Heisenberg Uncertainty Principle 
See Lecture 5 to read about the general uncertainty principle. 

Eq.(5.13), the simultaneous uncertainties of the observables 𝑨 and 𝑩 

 ∆𝑨∆𝑩 ≥
1

2
 ||⟨Ψ|[𝑨, 𝑩]|Ψ⟩ . 

The position and momentum operators are plugged into the preceding expression, bottom 

page 269. 

Susskind writes, page 270: “On the other hand, the probability 𝑃(𝑥) for a momentum 

eigenstate is uniformly spread over the 𝑥 axis. To see this, let’s take the wave function,       

Eq. (8.17), 

 𝜓𝑝(𝑥) =
1

√2𝜋
𝑒
𝑖𝑝𝑥

ħ  and multiply it by its complex conjugate: 

 𝜓𝑝
∗(𝑥)𝜓𝑝(𝑥) =

1

√2𝜋
𝑒−

𝑖𝑝𝑥

ħ
1

√2𝜋
𝑒
𝑖𝑝𝑥

ħ =
1

2𝜋
. The result is completely uniform”.  

Now we also know, Eq.(8.3): 

 ∫𝑃(𝑥)𝑑𝑥 = ∫  𝜓𝑝
∗(𝑥)𝜓𝑝(𝑥)𝑑𝑥 = ∫

1

2𝜋

∞

−∞
𝑑𝑥 = 1.  

Is this a surprising result? Well, the result is wrong. Here the Heisenberg uncertainty 

principle is at work:  

∫𝑃(𝑥)𝑑𝑥 → ∞ , since as mentioned by Susskind, the eigenstate of the position is a Delta 

function giving the position exactly at 𝑥0. Consequently ∆𝑿 → 0 and ∆𝑷 → ∞ . 

Well, there is still something uncomfortable here. 

 

Note: The probability 𝑃(𝑥) is uniformly spread over the 𝑥-axis. Let’s start with a uniform 

distribution over an interval (0, 𝑎). 𝑃(𝑥) = 𝐴, a constant over the given interval. Then 

normalization gives: 

 ∫ 𝑃(𝑥)𝑑𝑥
𝑎

0
= 𝐴𝑎 = 1 → 𝐴 =

1

𝑎
 . 

Hence, for a uniform distribution spread over the whole 𝑥-axis: 𝑎 → ∞ and 𝐴 → 0 

Question:  

The wave equation. Susskind mentioned on page 258, 𝜓(𝑥) to be “…just the generic symbol 

for whatever function we happen to be discussing”. Now we used in Lecture 8 various wave 

functions: 

• 𝜓(𝑥) = 𝛿(𝑥 − 𝑥0): this wave function represents states in which the particle is 

located right at the point  𝑥0 on the  𝑥 axis; the position representation, page 253. 

• 𝜓𝑝(𝑥) =
1

√2𝜋
𝑒
𝑖𝑝𝑥

ħ  : the momentum eigenfunction of the operator 𝑷 in the position 

basis, Eq.(8.17). The basis vectors are: |𝑥⟩. A wave function I suppose? Feynman: if a 

particle has a definite momentum 𝑝 and a corresponding definite energy 𝐸, the 

amplitude(wave function) to be found at any position 𝑥 would look like ⟨𝑥|𝛹⟩ ∝ 𝑒
𝑖𝑝𝑥

ħ . 

So 𝜓(𝑥) and 𝜓𝑝(𝑥) should not be muddled together. 



85 
 

• 𝜓̃(𝑝) =
1

√2𝜋
∫𝑑𝑥𝑒

−
𝑖𝑝𝑥

ħ 𝜓(𝑥): the wave function in the momentum representation,    

Eq. (8.24). No dependence on 𝑥. The basis vectors are : |𝑝⟩.  

We substitute 𝜓(𝑥) = 𝛿(𝑥 − 𝑥0) into 𝜓̃(𝑝) =
1

√2𝜋
∫𝑑𝑥𝑒

−
𝑖𝑝𝑥

ħ 𝜓(𝑥) and obtain  

𝜓̃(𝑝) =
1

√2𝜋
 ∫𝑑𝑥 𝑒

−
𝑖𝑝𝑥

ħ  𝛿(𝑥 − 𝑥0) =
1

√2𝜋
𝑒−

𝑖𝑝𝑥0
ħ ≠

1

√2𝜋
𝑒
𝑖𝑝𝑥

ħ = 𝜓𝑝(𝑥).  

However, one could imagine 
1

√2𝜋
𝑒−

𝑖𝑝𝑥0
ħ  to be valid for any 𝑥0. So, ≠→= . 

Let us have a look at Eq. (8.25): 𝜓(𝑥) =
1

√2𝜋
∫𝑑𝑝 𝑒

𝑖𝑝𝑥

ħ 𝜓̃(𝑝).  

Substitute the above expression 𝜓̃(𝑝) =
1

√2𝜋
𝑒−

𝑖𝑝𝑥0
ħ  into the Eq. 8.25, with the result:    

𝜓(𝑥) =
1

2𝜋
∫𝑑𝑝 𝑒

𝑖𝑝(𝑥−𝑥0)

ħ .  

Then, with 𝜓(𝑥) = 𝛿(𝑥 − 𝑥0) , the Dirac delta function: 

 𝛿(𝑥 − 𝑥0) =
1

2𝜋
∫𝑑𝑝 𝑒

𝑖𝑝(𝑥−𝑥0)

ħ .   

This expression for the Dirac delta function has the same form as the representation of the 

𝛿-function given above. However, to be the same, 𝛿(𝑥 − 𝑥0) should have been    

𝛿(𝑥 − 𝑥0) =  
1

2𝜋
∫
𝑑𝑝

ħ
 𝑒
𝑖𝑝(𝑥−𝑥0)

ħ  ,  

 A factor ħ is missing in front of the integral 𝛿(𝑥 − 𝑥0), since, 

 𝛿(𝑥 − 𝑥0) =  
ħ

2𝜋
∫
𝑑𝑝

ħ
 𝑒
𝑖𝑝(𝑥−𝑥0)

ħ  .  

If we scale  𝑥 in :     𝛿(𝑥) =
1

2𝜋
∫ 𝑒𝑖𝑘𝑥𝑑𝑘
∞

−∞
  (Chisholm and Morris) with ħ, then, 

 𝛿(𝑥) =
ħ

2𝜋
∫

𝑑𝑘

ħ
𝑒
𝑖𝑘𝑥

ħ
∞

−∞
 and this 𝛿-function equals 𝛿(𝑥 − 𝑥0).    

In Chisholm and Morris, the integral representation of the 𝛿-function has been derived not 

with help of quantum mechanics. The integral representation is derived in a pure 

mathematical way. So, this 𝛿-function representation can be used to find the above-

mentioned factor 𝐴, page 257. Not knowing: 𝐴 =
1

√2𝜋
, we have  

• 𝜓(𝑥) = 𝛿(𝑥 − 𝑥0). 

• 𝜓𝑝(𝑥) = 𝐴𝑒
𝑖𝑝𝑥

ħ . 

• 𝜓̃(𝑝) = 𝐴∫𝑑𝑥𝑒
−
𝑖𝑝𝑥

ħ 𝜓(𝑥). 

We substitute 𝜓(𝑥) = 𝛿(𝑥 − 𝑥0) into 𝜓̃(𝑝) = 𝐴∫𝑑𝑥𝑒
−
𝑖𝑝𝑥

ħ 𝜓(𝑥) and obtain  

𝜓̃(𝑝) = 𝐴 ∫𝑑𝑥 𝑒
−
𝑖𝑝𝑥

ħ  𝛿(𝑥 − 𝑥0) = 𝐴𝑒
−
𝑖𝑝𝑥0
ħ .  

Furthermore, we have:                                                                                                                

𝜓(𝑥) =  𝛿(𝑥 − 𝑥0)  = 𝐴 ∫𝑑𝑝 𝑒
𝑖𝑝𝑥

ħ 𝜓̃(𝑝).  

With 𝜓̃(𝑝) = 𝐴𝑒−
𝑖𝑝𝑥0
ħ , 

 𝛿(𝑥 − 𝑥0) = 𝐴
2 ∫𝑑𝑝 𝑒

𝑖𝑝(𝑥−𝑥0)

ħ .  

Use can be made of the integral representation for the 𝛿-function as derived by Chisholm 
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and Morris with the result 𝐴2 =
1

2𝜋
. A subtle operation? I do not know. 

In this Lecture Susskind summarizes the Heisenberg Uncertainty Principle elegantly. He 

showed that the probability 𝑃(𝑥) for a momentum eigenstate is uniformly spread over the 𝑥 

axis: 𝑃(𝑥) = 𝜓𝑝
∗(𝑥)𝜓𝑝(𝑥), and  ∫𝑃(𝑥)𝑑𝑥 = ∫  𝜓𝑝

∗(𝑥)𝜓𝑝(𝑥)𝑑𝑥 = ∫
1

2𝜋

∞

−∞
𝑑𝑥 = 1. Is it? 

Eq.(8.25): 𝜓(𝑥) =
1

√2𝜋
∫𝑑𝑝 𝑒

𝑖𝑝𝑥

ħ 𝜓̃(𝑝).  

We know 𝜓𝑝(𝑥) =
1

√2𝜋
𝑒
𝑖𝑝𝑥

ħ . Substitute this expression into Eq. 8.25 and we find 𝜓(𝑥) =

∫𝑑𝑝 𝜓̃(𝑝)𝜓𝑝(𝑥); 𝜓(𝑥) = 𝛿(𝑥 − 𝑥0).  

So finally: 

𝛿(𝑥 − 𝑥0) = ∫𝑑𝑝 𝜓̃(𝑝)𝜓𝑝(𝑥). Is this to be expected? 

Lecture 9. Particle Dynamics. 

9.1 A Simple Example 

To start with: the minus first law: States change in a way that information and distinctions 

are never erased. This leads to the principle of unitary. 

Now Susskind paid attention to: How do particles move in quantum mechanics? 

Then Susskind introduced the Original Schrödinger Equation, a special case of Eq.(9.1), 

representing the time-dependent Schrödinger equation. 

A simple version of the Hamiltonian is analysed, Eq.(9.2)  

With this simple Hamiltonian, the expectation value of position behaves according to 

classical equations of motion. 

Remark: 

On page 276 Susskind derived the derivatives of a function depending on (𝑥 − 𝑐𝑡). I feel a 

bit more comfortable by writing 
𝜕

𝑑𝑥
𝜓(𝑥 − 𝑐𝑡) =

𝜕𝜓

𝜕(𝑥−𝑐𝑡)

𝜕(𝑥−𝑐𝑡)

𝜕𝑥
=

𝜕𝜓

𝜕(𝑥−𝑐𝑡)
,  

and  
𝜕

𝜕𝑡
𝜓(𝑥 − 𝑐𝑡) = 

𝜕𝜓

𝜕(𝑥−𝑐𝑡)

𝜕(𝑥−𝑐𝑡)

𝜕𝑡
= −𝑐

𝜕𝜓

𝜕(𝑥−𝑐𝑡)
.  

Then,  

 
𝜕

𝜕𝑡
𝜓(𝑥 − 𝑐𝑡) = −𝑐

𝜕

𝑑𝑥
𝜓(𝑥 − 𝑐𝑡). 

Hence, for this whole family of solutions for 𝜓 , depending on 𝑥 − 𝑐𝑡 we have the operator         
𝜕

𝜕𝑡
= −𝑐

𝜕

𝑑𝑥
 , [Susskind, Volume III, page 131, there the function 𝜓(𝑥 + 𝑐𝑡) is analysed]. 

Notice that the 𝜕 is missing on page 276 in the derivative 
𝜕

𝜕𝑥
. A typo. 

 

9.2 Non-relativistic Free Particles. 
Remember: “Only massless particles can move at the velocity of light,….”. 

Gravitons? 

An important remark, page 280: “So, if you want to write down the quantum mechanical 

equations of a system whose classical physics you already know, it’s very reasonable to try 

using the classical Hamiltonian, translated into operator form”. 

Here I also refer to Lectures 4.5 and 4.6, where the time dependent Schrödinger equation 
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has been derived, Eq.(4.10) 

 ℏ
𝜕|Ψ⟩

𝜕𝑡
= −𝑖𝑯|Ψ⟩. 

Starting with the classical formulation of the Hamiltonian, Pages 280 and 281, Susskind 

presented the quantum mechanical equivalent in Eq.(9.4) for a nonrelativistic free particle. 

Equal to the result presented in Eq.(4.10) and  

 𝑯 = −
ℏ2

2𝑚

𝜕2

𝜕𝑥2
 . 

9.3 Time-Independent Schrödinger Equation 
In this Lecture the time-dependent Schrödinger-equation is solved. First the time-

independent Schrödinger-equation is solved. 

On page 284 Susskind used the expression “eigenvectors”. I think it should be 

eigenfunctions. We get used to it.  

Exercise 9.1 The kinetic energy 
Derive Eq. 9.7 by plugging Eq. 9.6 into Eq. 9.5. 

Substitute 𝜓(𝑥) = 𝑒
𝑖𝑝𝑥

ħ  , into 

 −
ħ2

2𝑚

𝜕2𝜓(𝑥)

𝜕𝑥2
= 𝐸𝜓(𝑥).  

𝜕2𝜓(𝑥)

𝜕𝑥2
= (

𝑖𝑝

ħ
)
2

𝜓(𝑥) .  

So, 

 −
ħ2

2𝑚

𝜕2𝜓(𝑥)

𝜕𝑥2
=

𝑝2

2𝑚
𝜓(𝑥) = 𝐸𝜓(𝑥).  

Consequently, 

 𝐸 =
𝑝2

2𝑚
.  

 

 

 

Nota bene: in this case 𝜓(𝑥) = 𝜓𝑝(𝑥) (See page 256) and Susskind writes (below Eq. (9.5)): 

“..momentum eigenvectors do the job…” 

Remark: 

Instead of 𝜓(𝑥) = 𝑒
𝑖𝑝𝑥

ħ , we could also have substituted 𝜓(𝑥) = 𝜓̃(𝑝)𝑒
𝑖𝑝𝑥

ħ  , since 𝜓̃(𝑝) does 

not explicitly depends on 𝑥.  

On page 285 the time-dependent wave function is obtained. 

Remark and (a lot of) Questions: 

On page 285 Susskind derived(constructed) the time-dependent wave equation with help of 

the time-independent Schrödinger equation. The momentum representation of the wave 

function: 

 𝜓(𝑝, 𝑡) = 𝜓̃(𝑝)
1

√2𝜋
exp (

𝑖(𝑝𝑥−
𝑝2𝑡

2𝑚
)

ħ
)., 

where the factor 𝜓̃(𝑝)
1

√2𝜋
 , has been plugged in. 

Instead of  
1

√2𝜋
 we could plug into the expression for 𝜓𝑝(𝑥, 𝑡), 𝜓̃(𝑝) and obtain: 

 𝜓𝑝(𝑥, 𝑡) = 𝜓̃(𝑝)exp (
𝑖(𝑝𝑥−

𝑝2𝑡

2𝑚
)

ħ
). (See Remark above, after Exercise 9.1) 
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Then Susskind writes: ”Any solution is a sum, or integral, of 𝜓(𝑥, 𝑡) = 𝑒𝑥𝑝 (
𝑖(𝑝𝑥−

𝑝2𝑡

2𝑚
)

ħ
): 

𝜓𝑝(𝑥, 𝑡) = ∫ 𝜓̃(𝑝)𝑒𝑥𝑝 (
𝑖(𝑝𝑥−

𝑝2𝑡

2𝑚
)

ħ
)𝑑𝑝 “. 

Well, intuitively I can understand this. However, I appreciate the following approach. With 

Eq.(8.25) we have: 

 𝜓𝑝(𝑥) =
1

√2𝜋
∫ 𝜓̃(𝑝)𝑑𝑝𝑒𝑥𝑝(

𝑖𝑝𝑥

ħ
).  

 𝜓𝑝(𝑥) is the time-independent wave equation in the coordinate presentation. 

The time-dependent solution is 

 𝜓𝑝(𝑥, 𝑡) = 𝜓𝑝(𝑥)exp (−
𝑖𝐸𝑡

ħ
), or with Eq.(9.7),  𝐸 = 𝑝2/2𝑚: 

𝜓𝑝(𝑥, 𝑡) = 
1

√2𝜋
∫ 𝜓̃(𝑝)exp (

𝑖(𝑝𝑥−
𝑝2𝑡

2𝑚
)

ħ
)𝑑𝑝.  

Still, I am not sure. Why? Well, using Eq.(8.25) for 𝜓(𝑥) and plug exp (−
𝑖𝐸𝑡

ħ
) into the integral 

we find the expression for 𝜓(𝑡, 𝑥) or 𝜓𝑝(𝑡, 𝑥). Is this correct? The expression exp (−
𝑖𝐸𝑡

ħ
) 

depends on 𝑝 through 𝐸 =
𝑝2

2𝑚
  and the integral is over 𝑝. 

Above I derived the expression 𝜓𝑝(𝑥, 𝑡) = 𝜓̃(𝑝)exp (
𝑖(𝑝𝑥−

𝑝2𝑡

2𝑚
)

ħ
). To me it becomes a bit more 

clear that, with the latter expression, a sum over all 𝑝 or an integral over 𝑝 leads to   

𝜓𝑝(𝑥, 𝑡) = ∫ 𝜓̃(𝑝)exp (
𝑖(𝑝𝑥−

𝑝2𝑡

2𝑚
)

ħ
)𝑑𝑝  . 

On page 285 Susskind writes below the preceding expression: “You can start with any wave 

function [𝜓𝑝(𝑥)?] at 𝑡 = 0, find 𝜓̃(𝑝) by Fourier transformation, and let it evolve……….”. This 

simple general solution has an important implication. Among other things, it says that the 

wave function in momentum-representation  (𝜓̃(𝑝)? ) changes with time in a remarkably 

simple way: 

𝜓̃(𝑝, 𝑡) = 𝜓̃(𝑝)exp (
𝑖(𝑝𝑥−

𝑝2𝑡

2𝑚
)

ħ
) “.        (L9.1) 

Can this be right? Susskind derived: 

 𝜓𝑝(𝑥, 𝑡) = ∫ 𝜓̃(𝑝)exp (
𝑖(𝑝𝑥−

𝑝2𝑡

2𝑚
)

ħ
)𝑑𝑝.  

Now we substitute the expression for 𝜓̃(𝑝, 𝑡) into the above expression for 𝜓𝑝(𝑥, 𝑡). We 

find:                     

 𝜓𝑝(𝑥, 𝑡) = ∫ 𝜓̃(𝑝, 𝑡))𝑑𝑝.  

Well, this seems to be wrong. So? In Eq. (L9.1) 𝜓̃(𝑝, 𝑡) also depends on 𝑥. Consequently, the 

phase changes in addition to 𝑡, with 𝑥. Or should 𝜓̃(𝑝, 𝑡) in Eq. (L9.1) be written as  

𝜓̃(𝑝, 𝑡) = 𝜓̃(𝑝)exp (−
𝑖𝑝2𝑡

2𝑚
)? Just like 𝜓𝑝(𝑥, 𝑡) = 𝜓𝑝(𝑥)exp (−

𝑖𝑝2𝑡

2𝑚
)?   

Or, again with Eq.(8.25), 

 𝜓̃(𝑝, 𝑡) = ∫𝜓(𝑥)exp (
𝑖(−𝑝𝑥−

𝑝2𝑡

2𝑚
)

ħ
)𝑑𝑥?  

Here 𝜓̃(𝑝, 𝑡) does not depend on 𝑥, and 𝜓(𝑥) is the position(or coordinate) representation 

of the momentum wave function. Can we still denote 𝜓(𝑥) to be the wave functions  

representing states in which the particle is located  right at the position 𝑥0 on the 𝑥 axis 
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(pages 253/254)? Then             

 𝜓(𝑥) = 𝛿(𝑥 − 𝑥0) and 

 𝜓̃(𝑝, 𝑡) = exp (
𝑖(−𝑝𝑥0−

𝑝2𝑡

2𝑚
)

ħ
).  

With Eq.(8.24) and 𝜓(𝑥) = 𝛿(𝑥 − 𝑥0) we have 

 𝜓̃(𝑝) = exp (−
𝑖𝑝𝑥0

ħ
).  

So, 

 𝜓̃(𝑝, 𝑡) = 𝜓̃(𝑝) exp (−
𝑖𝑝2𝑡

2𝑚
). 

I cannot explain the differences away. I doubt (L9.1) to be correct. A lot of questions indeed. 

9.4 Velocity and Momentum 
On page 286, Susskind presented the quantum mechanical formulation of the velocity. 

Susskind advised to review Lecture 4, section 4.9. 

It is about Eq.(4.17): 

 
𝑑

𝑑𝑡
〈𝑳〉 =

𝑖

ℏ
〈[𝑯, 𝑳]〉 . 

Then, with 𝑯 =
𝑷2

2𝑚
 , and 𝑳 = 𝑿 , Eq.(9.9) is obtained.  

Exercise 9.2 A Commutator 
Prove Eq. 9.10: 

 [𝑷𝟐, 𝑿] = 𝑷[𝑷, 𝑿] + [𝑷, 𝑿]𝑷 by expanding each side and comparing the results. 

 𝑷[𝑷,𝑿] + [𝑷, 𝑿]𝑷 = 𝑷𝟐𝑿 − 𝑷𝑿𝑷 + 𝑷𝑿𝑷 − 𝑿𝑷𝟐 = 𝑷𝟐𝑿 − 𝑿𝑷𝟐 = [𝑷𝟐, 𝑿] . 
 

For the velocity 𝑣 we have 𝑣 =
𝑑

𝑑𝑡
⟨𝜳|𝑿|𝜳⟩ =

𝑑

𝑑𝑡
⟨𝑿⟩.  

Furthermore, we know, with Eq. 4.17: 
𝑑

𝑑𝑡
⟨𝑿⟩ =

𝑖

ħ
 ⟨[𝑯, 𝑿]⟩.  

Page 282: 𝑯 =
𝑷𝟐

2𝑚
.  

Then, 

 𝑣 =
𝑑

𝑑𝑡
⟨𝑿⟩ =

𝑖

2𝑚ħ
⟨[𝑷𝟐, 𝑿]⟩.  

𝑷[𝑷, 𝑿] + [𝑷, 𝑿]𝑷 = [𝑷𝟐, 𝑿] . 
We also know [𝑷, 𝑿] = −𝑖ħ : 

with [𝑷𝟐, 𝑿] = 𝑷[𝑷, 𝑿] + [𝑷, 𝑿]𝑷  
[𝑷𝟐, 𝑿] = −2𝑖ħ𝑷 .  

 

 

For 𝑣 we finally obtain: 𝑣 =
𝑑

𝑑𝑡
⟨𝑿⟩ =

𝑖

2𝑚ħ
⟨[𝑷𝟐, 𝑿]⟩ =

⟨𝑷⟩

𝑚
,  

or ⟨𝑷⟩ = 𝑚𝑣, Eq.(9.11). 

On page 288 below Eq.(9.11),Susskind writes: “The expectation value of 𝑥….”. Eq. (9.11) is 

about the expectation value of 𝑷. Furthermore, Susskind writes: “What Eq. (9.11) tells us is 

that the centre of the wave packet travels according to the classical rule 𝑝 = 𝑚𝑣.” So, is it 

about the expectation value of 𝑥? I think it is. The confusion stems from the expectation 

value of 𝑷.  

9.5 Quantization 
Susskind started this Lecture summarizing the results of Lecture 9 so far, the process of 

quantization, briefly: 



90 
 

- start with a classical system, 

- replace the classical phase space with a linear vector space, 

- replace the 𝑥’s and 𝑝’s by their operators, 

- with these replacements, the Hamiltonian becomes an operator. 

Susskind concluded this section: “Quantum theory is probably much more fundamental than 

classical theory, which generally should be understood as an approximation”. 

9.6 Forces 
Susskind introduced the subject matter with the classical formulation of a force and the 

related potential. 

Remark: 

On page 291 Susskind discusses the operator 𝑽  and writes: “When the operator 𝑽 acts on 

any wave function 𝜓(𝑥), it multiplies the wave function by the function 𝑉(𝑥)”. To make the 

text comply with the expression below this text, the text should read: When the operator 𝑽 

acts on the vector |𝛹⟩ it multiplies the wave function  𝜓(𝑥) by the function 𝑉(𝑥). 

 

On page 293 Susskind writes: “But multiplying by 𝑥 and multiplying by a function of 𝑥 are 

operations that commute. In other words: [𝑿, 𝑽(𝑥)] = 0”. Let’s have a look. 

We start with Eq.(9.13): 𝑯 =
𝑷𝟐

2𝑚
+ 𝑽(𝑥). 

What is of interest is the commutator [𝑯, 𝑿]. Substitute the expression for 𝑯 into the 

commutator. The result is: 

 [𝑯, 𝑿] = [
𝑷𝟐

2𝑚
, 𝑿] + [𝑽, 𝑿].  

Now, [𝑽, 𝑿] or [𝑿, 𝑽(𝑥)] is zero when both 𝑿 and 𝑽(𝑥) are Hermitian. They are. Susskind 

already proved 𝑿  to be Hermitian. What about 𝑽? The operator for the potential energy 𝑽 

can be written as a polynomial of 𝑿. Consequently [𝑿, 𝑽(𝑥)] = 0. See page 115. 

This can also be illustrated by Eq. (9.17) with 𝑷 replaced by 𝑿: 

[𝑿, 𝑽(𝑥)]𝜓(𝑥) = 𝑥𝑉(𝑥)𝜓(𝑥) − 𝑉(𝑥)𝑥𝜓(𝑥) = 0. 

Eq. (9.15) is obtained with, Eq.(4.17): 

 
𝑑

𝑑𝑡
〈𝑳〉 =

𝑖

ℏ
〈[𝑯, 𝑳]〉, and with Eq.(9.13) → Eq.(9.15) . 

 

Exercise 9.3 Commutator of a potential function and the momentum operator 
Show that the right-hand side of Eq. (9.17) simplifies to the right-hand sight of Eq.(9.16). 
The right-hand side of Eq. (9.17): 

 𝑉(𝑥) (−𝑖ħ
𝑑

𝑑𝑥
)𝜓(𝑥) − (−𝑖ħ

𝑑

𝑑𝑥
) 𝑉(𝑥)𝜓(𝑥) =  

−𝑖ħ𝑉
𝑑𝜓

𝑑𝑥
+ 𝑖ħ𝑉

𝑑𝜓

𝑑𝑥
+ 𝑖ħ𝜓

𝑑𝑉

𝑑𝑥
= 𝑖ħ𝜓

𝑑𝑉

𝑑𝑥
= (𝑖ħ

𝑑𝑉

𝑑𝑥
)𝜓 . 

Then , Eq.(9.16): 

 [𝑽(𝑥), 𝑷]𝜓 = (𝑖ħ
𝑑𝑉

𝑑𝑥
)𝜓 

So, Eq.(9.16), 

 [𝑽(𝑥), 𝑷] = 𝑖ħ
𝑑𝑉

𝑑𝑥
 . 
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9.7 Linear Motion and the Classical Limit 
Attention is paid to the difference between the average of a function and the function of the 

average. 

Susskind emphasized, on page 295, “… the classical equations are only approximations, …”. 

In the legenda of Figure 9.3, page 296, Susskind writes: “Note 〈𝑥〉 = 0, ∆𝑥 > 0.” As defined 

in Figure 8.2 ? I suppose so. 

On the pages 296-301, Susskind discussed wave packets, potentials, and the uncertainty 

relation. 

9.8 Path Integrals 
Feynman’s favourites. The principle of least action. 

In this Lecture Susskind explained the least action principle starting with Volume I of the 

Theoretical Minimum Series. 

Action: the integral of the Lagrangian between the end points of the trajectory, bottom page 

302. 

Next, the step is made into the quantum mechanical world. Keeping in mind the uncertainty 

principle, we deal with probabilities. 

In Eq.(9.26), Susskind summarized Feynman’s formulation. 

Remark: 

At the bottom of page 307 the tiny time interval should read “𝜖” instead of “𝑒”. Typo. 

Time dependency of the state is presented with 𝐻 in the exponential expression instead of 𝐸 

for the energy eigenvalue. 

Lecture 10. Harmonic Oscillator. 

 
This Lecture is about the classical and quantum mechanical description of the harmonic 

oscillator. A basic ingredient of quantum mechanics. 

On the pages 312 and 313, Susskind presented a couple of examples of the harmonic 

oscillator. 

Let us start by citing Dirac:” This different algebra for the dynamical variables is one of the 

most important ways in which quantum mechanics differs from classical mechanics. We shall 

see later that, despite this fundamental difference, the dynamical variables of quantum 

mechanics still have many properties in common with their classical counterparts and it will 

be possible to build up a theory of them closely analogous to the classical theory and forming 

a beautiful generalization of it”. 

Various examples of the harmonic oscillator can be found in Feynman Vol. I, Chapter 23. 

10.1 The Classical Description 
Susskind invited us “… to imagine a very tiny version of a weight hanging from a spring”. 

The Lagrangian of such a system is presented, Eq.(10.3). On page 315, Susskind use 

Lagrange’s equation as presented in Volume I. 

 



92 
 

Exercise 10.1 The derivatives of a general oscillatory function 
Find the second derivative of 𝑥 in Eq.(10.9), and thereby show that it solves Eq.(10.8). 
Eq.(10.9): 
 𝑥 = 𝐴𝑐𝑜𝑠(𝜔𝑡) + 𝐵𝑠𝑖𝑛(𝜔𝑡).  
Then 
 𝑥̈ = −𝐴𝜔2 cos(𝜔𝑡) − 𝐵𝜔2 sin(𝜔𝑡) = −𝜔2𝑥.  

This represents Eq.(10.8). 
 

 

10.2 The Quantum Mechanical Description 
In this Lecture, Susskind analysed the microscopic harmonic oscillator. A couple of examples 

are presented.. 

Remark: 

Now that we are used to the conundrum of notations like 𝜓(𝑥),𝜓𝑝(𝑥), 𝜓(𝑝), |𝜓(𝑥)⟩,…..             

|𝜓(𝑝)⟩ and |𝛹⟩,   Susskind told us, page 317: “There are many possible system states, and 

each one is represented by a different wave function”.  

In Lecture 8 we learned the wave function for a particle moving on a line to be represented 

by the Dirac Delta Function, page 253, 𝜓(𝑥) = 𝛿(𝑥 − 𝑥0). So, the above statement about 

different wave functions is a general statement.  

The Dirac Delta Function is just a mathematical construct to describe the position wave 

function of a point-like particle. Well, we know there is no such thing as a point-like particle. 

That is probably the reason why Susskind and Feynman used Dirac Delta Functions. 

Approximations: a bell type curve or smeared out Dirac Delta Function. See the above 

Exercise on normalization with Dirac Delta Functions Approximations in my notes on Lecture 

8. Or is it the Heisenberg uncertainty principle that makes Feynman and Susskind choose a 

bell type curved wave function?  

 

Page 318: It is about “… a sensible wave function…”. Consequently, these functions need to 

be “normalizable”.  

The Hamiltonian is also derived from the Lagrangian. Then, the Hamiltonian is derived in 

terms of operators, page 320. 

10.3 The Schrödinger Equation 
In this Lecture Susskind dealt with the time dependent Schrödinger Equation, Eq.(10.3), 

derived in Lecture 4.5, Eq. (4.9) and with the correct dimensions in Eq. (4.10): 

 ℏ
𝜕|𝛹⟩

𝜕𝑡
= −𝑖𝑯|𝛹⟩.  

With Eq.(10.12), and the preceding equation, Eq.(10.13) is obtained. 

Eq.(10.13) can be solved numerically. 

“ ….it will form a wave packet that moves around like a harmonic oscillator.” 

Feynman, et al, presented the Schrödinger equation for the motion of a particle along a line. 

See Vol. III Chapter 16, page 16-4. Attention is paid to the history of the equation. 



93 
 

10.4 Energy Levels 
 

This Lecture is about calculating energy levels with the Hamiltonian. 

A rehearsal of the Schrödinger Ket recipe of section 4.13 is advised. 

On the top of page 323 two bullet points are given. The first mentions allowable values of 𝐸 

and the second possible eigenvalues of the energy. May be the difference between 

allowable and possible is subtle.  

Examples of the one-dimensional solution of the Schrödinger Equation can be found in 

Chapter 2 of the book by Mahan: “Quantum Mechanics in a Nutshell”.  

 

On page 323 Susskind stated: “Physical solutions of the Schrödinger equation must be 

normalizable.” 

The issue here is: find those solutions. 

10.5 The Ground State 
The Lecture started with the question: “What is the lowest possible energy level for a 

harmonic oscillator?”→”…and in fact, it has no state with zero energy either”. 

The lowest energy level is a level to remember. It is called the ground state. 

Susskind presented with Eq. (10.15) a wave function that works. 

On page 326 and 327, Susskind derived the ground state energy, Eq.(10.16).  

 

Remark about the ground state of the harmonic oscillator:  

The ground state wave function: 

 𝜓0(𝑥) = exp (−
𝜔

2ħ
𝑥2), Eq.(10.15). 

This wave function is not normalized.  

We could normalize 𝜓0(𝑥) in the usual way. 

∫ 𝜓0
∗+∞

−∞
(𝑥)𝜓0𝑑𝑥 = 1 , Eq.(10.10).  

With ∫ 𝑒−𝑦
2
𝑑𝑦

+∞

−∞
= √𝜋 , and 𝜓0(𝑥) = 𝐴 exp (−

𝜔

2ħ
𝑥2),  

we have 𝐴 = (
𝜔

ħ𝜋
)
1
4⁄ . Caveat: this normalization is done in the 𝑥-space, not the real world. 

Susskind used the transformation 𝑥 = √𝑚𝑦, where 𝑦 represents the real world. Experiments 

are done in the real world. So, what does 𝜓(𝑦) looks like? Using the transformation, we 

have: 

 𝜓(𝑦) = 𝐴 exp(−
𝜔𝑚

2ħ
𝑦2).  

Normalization in the real world gives: 

 𝐴 = (
2

𝜋
)1/4(

𝜔𝑚

2ħ
)
1
4⁄ . 

On page 325 Susskind presented a guess for the ground state wave function of the harmonic 

oscillator, Eq.(10.15). And indeed, it is a guess. It is also called a trial function. The only thing 

you must do is to find out whether it works or not. Well, you can test this through 

substitution in the Schrödinger equation. How did the professor know? Well, I do not know. 

What we know is the potential of the harmonic oscillator to be a potential with the most 

attractive region near 𝑥 = 0. Consequently, the particle is most probably found in the region 

near 𝑥 = 0. So, the ground state wave function can be represented by a Gaussian 
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distribution as given in Fig. 10.1 on page 325.  

On the other hand, since the approach is basically a guess or approximation, the guess can 

be tested by the so-called variational method to find the ground state 

(www.hitoshi.berkeley.edu) . 

But now something different. In this case we could use a representation of the Dirac Delta 

Function (Chisholm and Morris):  𝜓(𝑥) = 𝛿(𝑥) =
1

2𝜋
∫ 𝑒𝑖𝑘𝑥
∞

−∞
𝑑𝑘.  

Then 

 
𝜕2𝜓(𝑥)

𝜕𝑥2
= −𝑘2𝜓(𝑥). The linear representation of the oscillator. 

On page 326, Susskind showed the ground state wavefunction to be a good guess. 

10.6 Creation and Annihilation operators 
At the beginning of this Lecture, Susskind reflected on the similarity of the Heisenberg and 

the Schrödinger thinking about quantum mechanics. For the harmonic oscillator, the 

operator method is the more powerful tool. The commutator relations are involved. 

As expected, Susskind applied the operator method to the harmonic oscillator. The 

commutation relation between the momentum operator and the position operator is 

particularly useful.  The creation and annihilation operators are constructed with 𝑷 and 𝑿. At 

the bottom of page 328, the action of the creation(raising) and annihilation(lowering) 

operators are described.  

On page 329, Eq.(10.18), Susskind starts working with the Hamiltonian for the harmonic 

oscillator expressed in the momentum and position operators: 

 𝑯 =
1

2
(𝑷2 + 𝜔2𝑿2). 

This expression for the Hamiltonian and at the bottom of page 330, it is shown how to 

recover the actual Hamiltonian by adding 
𝜔ħ

2
 . This additive factor can be ignored for now. On 

top of page 332 Susskind plugged this constant back into the Hamiltonian operator. 

On the basis of factorizing the Hamiltonian, the definitions of the lowering, 𝒂− , and raising, 

𝒂+, operators are presented in Eqs.(10.20) and (10.21). 

In deriving Eq. (10.23), the Hamiltonian,  

 𝑯 = 𝜔ℏ(𝑵 +
1

2
), 

use has been made of [𝑿, 𝑷] = −[𝑷, 𝑿] and 𝑵 = 𝒂+𝒂−. 

With Eqs.(10.20) and (10.21): 

  [𝒂+, 𝒂−] = 𝒂+𝒂− − 𝒂−𝒂+ =
1

2𝜔ℏ
{(𝑷 + 𝑖𝜔𝑿)(𝑷 − 𝑖𝜔𝑿) − (𝑷 − 𝑖𝜔𝑿)(𝑷 + 𝑖𝜔𝑿)} = 

 =
1

2𝜔ℏ
{2𝑖𝜔[𝑷, 𝑿]} =

1

2𝜔ℏ
{2𝑖𝜔(−𝑖ℏ)} = 1. 

Page 333 and page 334:              

 [𝒂+, 𝑵] = 𝒂+𝑵−𝑵𝒂+ = 𝒂+𝒂+𝒂−−𝒂+𝒂−𝒂+ = 𝒂+(𝒂+𝒂− − 𝒂−𝒂+).  

The expression between brackets is the commutator of 𝒂+ and 𝒂−:                              

[𝒂+, 𝒂−] = −[𝒂−, 𝒂+] = −1.  

So, [𝒂+, 𝑵] = −𝒂+. 

At the top of page 334, Eq.(10.25), the commutators for the harmonic oscillator are listed. 

Then it is shown how the raising operator 𝒂+ works. A kind of induction procedure is used. 

The method of induction (Chisholm and Morris): assume the result to be true for one value 

of 𝑛, say 𝑛 = 𝑚, show that the expression for 𝑚 + 1 is the same as the expression for      

http://www.hitoshi.berkeley.edu/
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𝑛 = 𝑚. Then it is true for all integral values of 𝑛. 

Susskind writes, by definition, 𝑵|𝑛⟩ = 𝑛|𝑛⟩.  

So, do we find 𝑵|(𝑛 + 1)⟩ = (𝑛 + 1)|(𝑛 + 1)⟩?  

Well, what we see is a new vector 𝒂+|𝑛⟩ = |𝑛 + 1⟩, Eq.(10.27.  

Is this the same as saying: the expression for 𝑛 + 1 is the same as for 𝑛? What we can say is, 

when we substitute for 𝒂+|𝑛⟩, the vector |𝑛 + 1⟩ in Eq.(10.26), we find                           

𝑵|(𝑛 + 1)⟩ = (𝑛 + 1)|(𝑛 + 1)⟩.  

The preceding expression is similar to 𝑵|𝑛⟩ = 𝑛|𝑛⟩.  

I am not convinced that this is a rigorous proof. Well, at least it be considered as an 

application of the definition, 

 𝑵|𝑛⟩ = 𝑛|𝑛⟩ . 

 

Exercise with raising(creation) operator  
Again, a new vector is obtained by operating 𝒂+ on the vector |(𝑛 + 1)⟩. Then with the same procedure 
given at the bottom of page 334: 
 𝑵(𝒂+|𝑛 + 1⟩ = (𝒂+𝑵 − (𝒂+𝑵 − 𝑵𝒂+))|𝑛 + 1⟩ =  

= (𝒂+𝑵 − (−𝒂+))|𝑛 + 1⟩ = (𝒂+𝑵 + 𝒂+)|𝑛 + 1⟩ = 𝒂+𝑵|𝑛 + 1⟩ + 𝒂+|𝑛 + 1⟩.  

With  
  𝑵|(𝑛 + 1)⟩ = (𝑛 + 1)|(𝑛 + 1)⟩: 
 𝑵(𝒂+|𝑛 + 1⟩) = 𝒂+(𝑛 + 1)|𝑛 + 1⟩ + 𝒂+|𝑛 + 1⟩ = (𝑛 + 2)𝒂+|𝑛 + 1⟩. 
Like Eq.(10.27): 
 𝒂+|𝑛 + 1⟩ = |𝑛 + 2⟩  
and, 
𝑵|(𝑛 + 2)⟩ = (𝑛 + 2)|(𝑛 + 2)⟩. 

 

Now the lowering operator.  

We start again with 𝑵|𝑛⟩ = 𝑛|𝑛⟩, and introduce a new vector 𝒂−|𝑛⟩. With the procedure at 

the bottom of page 334 we have: 

𝑵(𝒂−|𝑛⟩) = (𝒂−𝑵− (𝒂−𝑵−𝑵𝒂−))|𝑛⟩ = 𝒂−𝑵|𝑛⟩ − 𝒂−|𝑛⟩.  

With 𝑵|𝑛⟩ = 𝑛|𝑛⟩:  

𝑵(𝒂−|𝑛⟩) = 𝒂−𝑛|𝑛⟩ − 𝒂−|𝑛⟩ = (𝑛 − 1)𝒂−|𝑛⟩.  

By the induction procedure of page 334, we obtain Eq.(10.28): 

 𝒂−|𝒏⟩ = |𝑛 − 1⟩  
and 

 𝑵|(𝑛 − 1)⟩ = (𝑛 − 1)|(𝑛 − 1)⟩.  

Susskind writes at the bottom of page 335: “What about the lowering operator? Not 

surprisingly, we find that 𝒂−|𝑛⟩ produces an eigenvector whose eigenvalue is one unit lower: 

𝒂−|𝑛⟩ = |(𝑛 − 1)⟩.” 

As mentioned by Susskind this lowering cannot go on and the downward sequence must 

end. To this end the ground state as the lowest energy state |0⟩ must be introduced. A sort 

of Archimedes ‘lever.  

Susskind(page): “Being the lowest energy state, |0⟩ is the ground state, and its energy is: 

𝐸0 =
𝜔ħ

2
.  (|0⟩) is an eigenvector of 𝑵 with an eigenvalue 0”. This statement by Susskind is 

not quite clear to me. The energy of the ground-state |0⟩ is:  𝐸0 =
𝜔ħ

2
.  
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So, consequently  𝐸0 =
𝜔ħ

2
 is an eigenvalue of |0⟩.  

However, following the statement of Susskind,  |0⟩ is an eigenvector of 𝑵 with an eigenvalue 

of zero. I think we learned from Lecture 10.5 : 

 𝐸0 =
𝜔ħ

2
 represents the ground-state energy and is an eigenvalue of 𝑯. This is illustrated by   

𝑯−
𝜔ħ

2
𝑵 =

𝜔ħ

2
. I prefer instead of 𝒂−|0⟩ = 0, Eq. 10.29, 𝑵𝒂−|0⟩ = 0|0⟩. Then it is clear 

𝐸0 =
𝜔ħ

2
 , being an eigenvalue of 𝑯. 

On page 336 Susskind writes: “We often say that the ground-state is annihilated by 𝒂−“. 

Well, I just learned that the ground-state is the lowest allowable and possible value of 𝐸. So, 

it appears to me that the effect of the operator 𝒂− is annihilated. May be annihilated means 

something special.  

Also operating 𝒂− on 𝜓0(𝑥) resulted into the non-zero ground-state wave function 

exp (−
𝜔

2ħ
𝑥2). The ground-state is certainly not annihilated. This came to me as a certain 

wake up call. The operator for finding the observables is the Hamiltonian which can be 

written as Eq. 10.22: 

 𝑯 = 𝜔ħ(𝒂+𝒂− +
1

2
) .  

So, the raising and lowering operators are acting together.  

I think the raising and lowering operators with the newly defined vectors 𝒂+|𝑛⟩, and 𝒂−|𝑛⟩ 

are used to show the eigenvalues of the Hamiltonian change with integer steps. So, in this 

way you can find the eigenvalue spectrum. These new vectors illustrate  the way the eigen 

vector spectrum can be found.  

On page 335 in Fig. 10.2 a ‘ladder’ is shown. This ladder or the raising and lowering 

operators are developed by Dirac. The combined operators are sometimes called the ladder 

operator. 

On the internet you can find nice pictures of the quantum harmonic oscillator. 

On page 336 Susskind also writes: “It allowed us to find the entire spectrum of harmonic 

oscillator energy levels without solving a single difficult equation”.   

Well, almost. Susskind gave the solution for the ground state, Eq. (10.15) : 

 𝜓(𝑥) = 𝑒−
𝜔

2ħ
𝑥2  (not normalized and not in the real world) and derived the ground state 

energy 𝐸0 =
𝜔ħ

2
, Eq. (10.16) and (10.30) The normalized wave function of the ground-state is: 

𝜓0 = (
𝜔𝑚

ħ𝜋
)
1
4⁄ 𝑒−

𝜔𝑚

2ħ
𝑦2 .  

10.7 Back to Wave Functions 
Susskind mentioned operator algebra to be rather abstract. To show the usefulness,  

Eq.(10.29) is rewritten in terms of the position and momentum operators, page 337. 

On page 339 the exited state of the harmonic oscillator has been derived, using the raising 

operator:                               

 𝜓1 = 2𝑖𝜔𝑥𝑒
−
𝜔

2ħ
𝑥2(not in the real world), 

without the normalization factor for the ground-state in the 𝑥-space.  

What does the expression for the exited state looks like in the real world? Well, the proof of 

the pudding is in the eating. We follow the approach of Susskind on page 339 and write: 
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𝜓1(𝑦) = (−
𝑖ħ

√𝑚

𝜕

𝜕𝑦
+ 𝑖𝜔√𝑚𝑦)(

𝜔𝑚

ħ𝜋
)
1
4⁄ 𝑒−

𝜔𝑚

2ħ
𝑦2,  

where we used the ground-state 𝜓0 in the real world.  

This leads to 𝜓1(𝑦) = 2𝑖𝜔√𝑚𝑦(
𝜔𝑚

𝜋ħ
)1/4 exp(−

𝑚𝜔

2ħ
𝑦2).  

This exited wave function is not normalized. To correct this, we must multiply the raising 

operator by the constant −𝑖/√2𝜔ħ.  

This indeed effects the numerical coefficient, the amplitude. By plugging this constant back 

into the exited state 𝜓1(𝑦) , this state is normalized. Why bother? Well, reading and 

comparing the results of Mahan on the harmonic oscillator you could get confused. In 

addition, you can call it a numerical coefficient. However, it is part of the amplitude of the 

eigenfunction. We learned the amplitude to be an important quantity in doing experiments: 

the probability of finding a particle in the real world. So, for  completeness I give the exited 

wave function: 

 𝜓1(𝑦) = (
2

𝜋
)5/4(

𝑚𝜔

2ħ
)3/4 y exp(−

𝑚𝜔

2ħ
𝑦2), 

or: 

 𝜓1(𝑦) =
2

𝜋
(
𝑚𝜔

2ħ
)

1

2
𝑦𝜓0(𝑦). 

On page 341 is written: “The ground-state eigenfunction 𝑒−
𝜔

2
𝑥2………..”. A typo. The ground-

state is: exp (−
𝜔

2ħ
𝑥2). There Susskind mentioned the Hermite polynomials for the 

eigenfunctions of the Schrödinger equation. 

Mahan, page 30 and 31 presented the eigenfunction solution with Hermite polynomials, 

Eqs.(2.108)-(2.114). 

First I summarize the results of Susskind for the ground state and the first two exited states: 

 𝜓0 ∝ 𝑒
−
𝜔𝑥2

2ħ  , 𝜓1 ∝ 𝑥𝑒
−
𝜔𝑥2

2ħ  and 𝜓2 ∝ (𝑥
2 −

ħ

2𝜔
)𝑒−

𝜔𝑥2

2ħ  . 

Now Mahan: 

𝜓0 ∝ 𝑒
−
𝑚𝜔𝑥2

2ħ  , 𝜓1 ∝ 𝑥𝑒
−
𝑚𝜔𝑥2

2ħ  and 𝜓2 ∝ (𝑥
2 −

ħ

2𝑚𝜔
)𝑒−

𝑚𝜔𝑥2

2ħ . 

Mahan has the mass 𝑚 included. This is explained by Susskind by the definition where 𝑚 is 

absorbed in the new 𝑥 on page 314. 

10.8 The Importance of Quantization 
In the last Lecture, Susskind painted a picture for future lectures, especially quantum field 

theory. Susskind showed some examples like the oscillating electric and magnetic fields, 

Figure 10.3. 

The importance of frequency is mentioned: “…the frequency determines the quantum energy 

of the oscillator.” 

The elementary particle photon and its energy is introduced. 

Susskind: “In the end, it all goes back to the harmonic oscillator”.  

  

Epilogue 
We learned about the Schrödinger equation. An equation describing the steady flow of 

matter waves. Born reinterpreted the wave function as probabilities. This brought 
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Schrödinger’s equation in line with Heisenberg’s indeterminacy. I do not know whether 

Schrödinger appreciated that (Halpern). Reading Cox and Forshaw, I got the impression that 

Schrödinger was not amused by the Born interpretation. 

I leave Volume II of the Theoretical Minimum Series. Let us look forward to the next volume 

on Quantum Mechanics. 

Remark: The next volume I laid my hands on is about Special Relativity and Classical Field 

Theory, 2017. 
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