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Remarks, Questions and Exercises.

Based on Quantum Mechanics, The Theoretical Minimum by Susskind, The Feynman
Lectures on Physics and The Principles of Quantum Mechanics by Dirac.

Below | adopt the Lecture System of Susskind. The book of Susskind | consider to be a good
introduction into the subject matter. Due to the focus on two-state spin particles the book
presents a coherent picture.
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Lecture 1. Systems and Experiment, page 1

1.1 Quantum Mechanics is Different, page 1*

Lecture 1 is about Systems and Experiments. In this lecture Susskind explains why quantum
mechanics is different. Spins and qubits are introduced illustrated by an experiment which is
never gentle. Classical and quantum mechanical propositions are considered. Bras, kets,
inner products and orthonormal bases are explained.

1.2 Spins and Qubits, page 3
In the book, spin is paid a lot of attention to.

1.3 An Experiment, page 4
The coin is introduced again. With the coin the idea of state and spin is explained.

1.4 Experiments Are never Gentle, page 12
The basic idea explained is: experiments are always invasive.

1.5 Propositions, page 13
Susskind explained Propositions starting with Boolean logic.

! Page numbers of Quantum Mechanics



1.6 Testing Classical Propositions, page 16
A gquantum system of a single spin is used for testing proposition.

1.7 Testing Quantum Propositions, page 18
In this section, the logical difference between the classical and quantum concept of the state
of a system is discussed.

1.8 Mathematical Interlude: Complex Numbers, page 21
Here Susskind rehearsed the concept of complex numbers.
The vector notation and the Euler notation are given.

1.9 Mathematical Interlude: Vector Spaces, page 24

1.9.1 Axioms, page 24
As explained by Susskind, the space of states in a classical system is a mathematical set. In
guantum mechanics the space of states is a vector space.

1.9.2 Functions and Column Vectors, page 27
In this section concrete examples of complex vector spaces are given.

1.9.3 Bras and Kets, page 28
The complex conjugate vector space is introduced.

Note: Bras, (|, and kets, |), were invented by Dirac. These represent a remarkably effective
and efficient toolkit to deal with the mathematical operations in Quantum Mechanics. Bras
mean bra vectors and kets mean ket vectors. Chapter | and Il of Dirac give the introduction
into ket and bra vectors. To learn more about Dirac | recommend reading of the biography
“The Strangest Man, the hidden life of Paul Dirac, quantum genius” by Farmelo. Also, the
interview with Dirac in “QED and the men who made it” by Schweber is special.

For additional reading on the application of bra- and ket vectors see The Feynman Lectures
on Physics Ill. To learn also more about Feynman, | recommend “Genius, The Life and Science
of Richard Feynman” by Gleick. In addition, “Surely, You’re Joking, Mr Feynman!” edited by
Hutchings. And as a follow-up “What Do You Care What Other People Think” by Leighton.

1.9.4 Inner Products, page 30

On top of page 31, Susskind presents:

(B|A) = (A|B)" .

(B|A) is given by row and column vectors and the inner product is calculated:
(BlA) = X} Bi i, (1.2).

(BlA)" =33 B a;.

With (A|B)*

(AIB) = % B;a; .

Consequently

(BlA) = (A|B)".



Exercise 1.1 About the axioms for inner products, page 31
a) Using the axioms for inner products, prove
{{(Al + (BI}|C) = (A|C) + (B|C). (L1.1)
Axioms:
1. They are linear
(CI{14) + |B)} = (C|A) + (C|B)
2. Interchanging bras and kets corresponds to complex conjugation:
(BlA) = (A|B)"
Proof of a):
The complex conjugate of the left-hand side of (L1.1)
{{Al + (B}IC) = (CI{14) + |B)}" = (C|A)" +(C|B)" = (A|C) + (BIC).
b) Prove (A|A) is a real number.
Axiom 2 gives (A|A) = (A|A)*. Suppose (A|A) is a complex number. (A|A)* is the complex conjugate. When
a complex number equals its complex conjugate, the imaginary part of that complex number must be zero.
So (A|A) is a real number.
A complex number can be represented by:
a+ib,
where {a,b € R}.
With the complex conjugate of a complex number equals the complex number:
(a+ib)y*=a—ib=a+ib—->b=0.
Note: Dirac page 21.

Exercise 1.2 Application of the axioms for inner products, page 32

Show that the inner product defined by Eq.(1.2)- Eq.(1.2) refers to the book of Susskind- satisfies all the
axioms of inner product. The axioms are given in Exercise 1.1.

a). Axiom 1.

aq b1
YiVa - Vn {(“z) + (52)} =y10 V20, + Yty + VB + V2B + - Vabn

an .Bn
and
b). Axiom 2.
(BlA) = Biay + Biaz + - Bray,
and

(AIBY = ai"Bi + a3 B3 + = an B = a1y + azf3 + -+ atnfp.

This section is concluded with the definitions of normalized and orthogonal vectors.

1.9.5 Orthonormal Basis, page 32
Remarks:
|4) = Xia; i), (Eq. 1.3),
where a; are complex numbers.
(14) = Xila;|i) = X;ai{jli),
where (j[i) = §;;s0 (jlA) = a;.
Eqg. (1.3) can be written in an elegant form. Let us look for this form. One way to obtain this
is:
|A) =2 a; |y = Xili)a; with a; = (i|A) so |A) = X;[i)(i|A).
The other way: we assume
|A) = >;|i)i|A) to be correct.



Now (jl4) = (j| ZiliXilA) = Zi(jliNilA) = (jlA),

since {j|i) = §;; the Kronecker delta.

Plug Eq. (1.5) into Eq. (1.3):

|4) = Xi(ilA) [i) .

This expression rewrites Susskind into

|4) = XiliXilA).

Elegant indeed, why? Well, it is basically about the outer product. We will learn about the
outer product in section 7.2.

Lecture 2. Quantum States.

States and vectors are discussed. Spin states along the x-axis, the y-axis and the z-axis are
given attention. The number of independent parameters and the representation of spin
states as column vectors are introduced.

2.1 States and Vectors

Note: This lecture starts with a reflection on the unpredictability and the completeness of
Quantum Mechanics. Susskind adopts the unpredictability of QM. Of course, there is no
ultimate answer. An interesting view on the subject matter is given by Stewart: “Does God
Play Dice?”. It is all about hidden variables. Also, the book of Smolin is instructive reading in
this respect: when you need decades of constants to adjust theory to explain experiment you
could wonder about the need of hidden variables.

2.2 Representing Spin States

As mentioned by Susskind the space of states for a single spin has only two dimensions.
|u) and |d) are chosen as the two orthonormal basic vectors.

All possible spin states can be represented in a two-dimensional vector space. Top of page
38.

With

A= ay|u) + ayld) =

- (ul4) = (ulay|u) + (ulagld) = a,ulu) + ag(uld).

With (u|d) = 0, Eq. (2.3),

a, = (u|A).

The state vector is normalized: (A|A) = 1, consequently

(ulay + (d]aj)(ay|u) + a4ld)) = apa, + ajay = 1.

a,a, and aja, represent probabilities. Consequently, in this two base vector system, these
probabilities add up to 1: (2.2).

2.3 Along the x Axis

Then, Susskind derived the vectors |r) and |l) along the x — axis presented by Eq. 2.5 and

Eq. 2.6. After deriving vector |r) , one must remember that ([|r) = 0 (the inner product) and
aya, = zand agag = 3. (L2.1)

These equal probabilities are explained by Susskind just above Eq. 2.5.

The a’s are complex numbers, and we can illustrate phase ambiguity by representing the



complex numbers in polar coordinates(q, 8):
a, = q,e% and ay = qe'fa,
With (L2.1) we find g, = £ iz andqy = \/12 where the minus sign represents a phase shift

of 7. On page 42 Susskind explains why you can neglect the phase factor e .

Now [[): with the same procedure |l) = B, |u) + B4ld) and polar coordinates we have:
Bu=gzand fa=—7;

where use has been made of (I|r) = 0.

There is no other way to find out about the coefficients used for the vectors |r) and |I).
We have 3 equations and 4 unknowns:

1) = ay|u) + a4ld) = aja, + aja; =1,

11} = Bulw) + Bald) = Bifu + BaBa = 1,

(Ury = 0= Byay + faaq = 0.

Exercise 2.1 About orthogonality
Prove that the vector |r) in Eqg. 2.5 is orthogonal to vector |1} in Eq. 2.6:

() = (5 + (dI )G W) — 1d) = > wlu) — 2 uld) + 2 (dlu) - >(dld) = 0.

2.4 Along the y Axis

About vectors representing spins oriented along the y axis.

Remark:

Susskind used |i) as a vector for the y-axis. Do not confuse this with i = vV—1.

Susskind presents the conditions for the vectors representing the spins along the y-axis.
From the statistical results of the experiments, Egs.2.8 and 2.9 are derived. The conditions
presented in these equations are sufficient to derive Eq.2.10.

Exercise 2.2 About Probabilities

Prove that |i) and |o) satisfy all the conditions in Egs. 2.7, 2.8, and 2.9. Are they unique in that respect?
. . 1 —i 1 i 1 1

Eq. 2.7 (ilo) = 0. (i]o) = ((ul\/—E + (dl\/—i)(ﬁlu) — ﬁld)) =5"5= 0.

1

Eq.2.8 As an example we take B, =< ilu >< uli >= >

1 i 1 i 1
So ((ul 5~ (dl7) wul (F 1w + 5 1d) =3
Eqg. 2.9 As an example (i|r){r|i) = i Here we have |r) instead of |u). A bit more complicated but straight
forward.

(w5- %) (Fw+51d) (W5+d5) (G +51d) =2

Are the vectors |i) and |o) unique? No, they are not. There is phase ambiguity and the a’s
are complex.
Note: Dirac page 22.

By setting the phase factor equal to 0 and equal to g , the a’s are real or pure imaginary,

respectively. | will show this in the next exercise.
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Exercise 2.3 More about the components of |i>and |o>
For the moment, forget that Egs. 2.10 give us working definitions for |i) and |o) in terms of |u) and |d), and
assume the components a, 8,y and § are unknown:

li) = alu) +pld),
(L2.2)

lo) =vylu)+68ld).
(L2.3)

a) Use Egs. 2.8to showthata™a = " =y'y =66 = é

With (L2.2) and (L2.3):

(olu) = ((uly™ +{d|6")|u) =y"and(ulo) = (u|(ylu) +61d)) =v,
where use has been made of: (u|y*|u) and (d|6*|u) = 0.
Furthermore, Egs. (2.8), (o|u){ulo) = %, and consequently y*y = %
Analogously we obtain a*a = f*f = 3§"6 = %

b) With the result of a) and Egs. 2.9 show that ¢ + aff* =y*§ + yd* = 0.
We know, Egs. (2.9), that {(i|r){r|i) = %

Then, with |r) given in Eq. (2.5) and |i) given in (L2.2), we have

(ilr)rliy =2 (@ + B) (@ + ) =+,
Consequently, (a* + " )(a + B) = 1.
From the preceding expression we learn the real part a*a + *f = 1, and the complex part
a’f+af*=0.

We could have used the results under a), (i|lu){uli) = a*a = % and (i|d){d|i) = B*B =

Then, the result of (i|r){r|i) gives again: a*f + af* = 0.

1
2

In the same way we obtain, with (o|r){(r|o) = % :

y*6 +y6* =0.

c) Show that a*f8 and y*6 must each be pure imaginary.

We have shown in a) thata*a = " = % Hence a*faf* = %.
Note:seta@ = a + iband f = c + id, where {a, b, c,d € R}.
Then a*af*B = a*BaB”.

Furthermore with b):

af* = —a’B wefind (@’ B)? = —=.

4
Hence, a*f is pure imaginary. Analogously y*§ is pure imaginary. This leads to the conclusion, in general,
a, 3,y and § to be complex numbers. Now we have phase ambiguity, and we can choose «, y to be real and
B, 8 to be imaginary.
This can be illustrated a little more elegantly with polar coordinates.
For a we write: @ = ;,e!% and 8 = r,e'%a.

. w1, _ 1 I _1
Witha) a*a = STy —1\/2 and similarly ry4 7
Then with (a*f)? = — we have e?0a=0w) = _1 = " 500, -0, = %, a sort of relative phase factor.
Now we choose arbitrarily 8, = 0 consequently 8,; = g Hence «a is real and [ is imaginary. The same

reasoning applies to y and §.

2.5 Counting Parameters.
What are the number of physically distinct states for a spin?
Susskind explained the need of just two parameters to specify the spin.

2.6 Representing Spin States as Column Vectors.

In this section Susskind presented an example of Ockham’s razor: “.... and we’ll try to choose
the simplest and most convenient ones we can find.” With “ones” Susskind meant the
column vector representation of the bra’s and kets.

11



2.7 Putting It All Together

The title of this section reflects the content of this section: a summary of Chapter 2.

This includes a remark on phase indifference: “The physics of the state-vector is unaffected
by its overall phase factor”. Exercise 2.3 shows that the relative phase factor cannot be
ignored.

Dirac: ”“Any state of our dynamical system at a particular time can be specified by the
direction of a bra as well as by the direction of a ket vector. The whole theory will be
symmetrical in its essentials between bras and kets.

Lecture 3. Principles of Quantum Mechanics.

Lecture 3 is about the Principles of Quantum Mechanics, (Hermitian)operators, eigenvalues,
and eigenvectors. Constructing spin operators is the core of this lecture. The lecture
concludes with the Spin-Polarization Principle.

3.1 Mathematical Interlude: Linear Operators

3.1.1 Machines and Matrices

In this section linear operators are introduced: Physical observables are described by linear
operators. Throughout the Lectures, Susskind denote a general operator with M, for obvious
reasons. Properties of M are presented.
The operator M as a matrix is introduced, Eq.(3.2), and my; = (k|M]|j) are the matrix
elements.

The way the operator M operates on kets and bra’s is explained in some detail.

On page 54, this is shown with

M|A) = |B),

this expression is written in component form.

|A) = X a; 1))

|B) is expanded in the same basis:

|B) = X Bjl))-

So,

M|A) = |B) -» XjMa; |j) = X M|j) a; = X B;l)).

Take the inner product of both sides with the bra of one of the basis vectors |k):
Yi{kIM|j)a; = X Bi<kl|j), Eq.(3.1),

where (k|j) = ;.

Fork # j — 6;; = 0,and for k = j - §;; = 1; the Kronecker delta.

Then, with Eq.(3.1)and k = j

(kIM|k)ay = By

For k # j, with Eq.(3.1)

Zj(klMlj) aj = 0.

Now, Eqg.(3.3), page 55,

Zj my;a; = Bk-

This result differs from (k|M|k)a; = By, unless matrix M is a matrix with only diagonal
entries:

12



(k|M|j)a; = 0, for k # j.
So, the analysis on pages 54 and 55 remains a bit unclear to me.

3.1.2 Eigenvalues and Eigenvectors
The definition of the eigenvector and eigenvalues of a linear operator M are presented,
Eq.(3.5).
An example:
0 -1
M= - ).
Then,

0 D0=10)=()=(E)=r==ass

Hence, the eigenvalue A = —i.

3.1.3 Hermitian Conjugation

In section 3.1.2 the way M operates on bra’s and kets was explained in some detail. There is
more. To operate M on bra’s, complex conjugation is needed.

Then, Susskind explained the concept of complex conjugation and the definition of
Hermitian conjugate is introduced.

On page 61, Susskind presents the consequences of the Hermitian operator M :

M|A) = |B),
then
(AlM* = (B].

Then, multiply M|A) = |B) to the left with the bra (B|, and multiply (A|MJr = (B| to the
right with the ket |B),

(BIM|A) = (B|B) = (A|M*|B). (L.3.1.3.1)
| recall the expression on top of page 31:
(B|A) = (A|B)". (L.3.1.3.2)

Plug (A|M' = (B|, and M|A) = |B), into L(3.1.3.2)

(A|MT|A) = (AIM|A)".

Assume the kets and bras to be normalized: (A|A) = 1 and (B|B) = 1.

Plug into (L.3.1.3.1), in (B|M|A) , <A|MT = (B|, then

(A|MtM|A) = (BIB) = 1. (L3.1.3.3)
In addition:

(AlA) = 1.

What kind of operator does MM represent?

Plug into (L.3.1.3.2), |B) = M|A) and (A|M' = (B|.

The result is,

(A|M1|A) = (A|M|A)". (L3.1.3.4)
What kind of operator is M ? A general operator? It should be. (L.3.1.3.4) most probably
represents an identity.

13



3.1.4 Hermitian Operators

In this Lecture Susskind writes: “Real numbers play a special role in physics. The results of
any measurement are real numbers. Sometimes, we measure two quantities, put them
together with an i (forming a complex number) and call this number the result of a
measurement”.

Dirac page 35: “ One might think one could measure a complex dynamical variable by
measuring separately its real and pure imaginary part. But this would involve two
measurements or two observations, which would be all right in classical mechanics, but
would not do in quantum mechanics, where two observations in general interfere with one
another- it is not in general permissible to consider that two observations can be made
exactly simultaneously, and if they are made in quick succession the first will usually disturb
the state of the system and introduce an indeterminacy that will affect the second”.
Question: Will a dialogue Dirac-Susskind help, a dialogue like the one between Democritus
and Lederman(Lederman)?

Hermitian operators and the related observables are introduced.
Susskind proved the eigenvalues of Hermitian operators to be real.

3.1.5 Hermitian Operators and Orthonormal Bases

Hermitian operators and orthonormal bases are discussed.

On page 66 Susskind mentioned the possibility of constructing an orthonormal basis. He
illustrated this with a two-dimensional case. Then he writes: “It should be clear that any
linear combination of the two eigenvectors is also an eigenvector with the same eigenvalue.
With this much freedom, it is always possible to find two orthonormal linear combinations.”
Well, I think referring to this two-dimensional case one linear combination is sufficient. This
linear combination is constructed with help of a combination of the vectors |4,) and |1,) . Or
is this what Susskind meant by two linear combinations?

Or another possibility could be:

|4) = alA;) + Bl4z), (L.3.1.5.1)
|B) = y|41) + 6]4z). (L3.1.5.2)
Now,

(A|B) can be 0? Well, a, 8,y and § are complex numbers. Analyse the result of the inner
product (4|B) by representing the complex numbers by a real and an imaginary part.
See Exercise 3.1 below.

First, let’s analyse

(AlA) - |a|* +|BI* = 1.

(AlA1 )4 |A) = |al?.

(A|12;)(2214) = |B|?.

Then

(AlA) = (A| 1)1 |A) + (A]A,)(A,]A). (L.3.1.5.3)
Hence,

(A14) = (A(|2:){A1] +[22 X221 A).

Consequently

What kind of machine is represented in (L.3.1.5.4)?

14



Well, in general (L.3.1.5.4) represents
or

Xl =1,
see pages 33 and 34.

|4) = X;[i)(i]A),
where “|i) is the orthonormal basis of ket vectors labelled |i) .”

(AlA) = 1 = (A| X;]iXi]|A) = X;i)i] = 1. (L.3.1.5.6)
Next: the Exercise 3.1.

Exercise 3.1: About an orthonormal base

Prove the following: If a vector space is N-dimensional, an orthonormal basis of N vectors can be
constructed from the eigenvectors (plural, > 1) of a Hermitian operator.

If a space is N-dimensional there will be N orthonormal vectors.

| suppose The Fundamental Theorem on page 64 does apply here.

These orthonormal vectors can be constructed of the eigenvectors of a Hermitian operator. See page 66.
With two orthonormal eigenvectors |4,) and |1,) of a Hermitian operator, | choose two linear combinations
|[A) = a|A,) + B|Ay), (L3.1.5.1),

and

|B) = y|Ay) + 6|Ay), (L3.1.5.2).

Now,

(A|B) = 0.

Then,

a'y+p6=0. (L.3.1.5.7)

(Al4) - |a]* + |B|?> =1, (L.3.1.5.8)

and

(B|B) = |y|?> + 6] = 1. (L.3.1.5.9)
(L.3.1.5.7)- (L.3.1.5.9): four equations and four unknowns — |A) and |B) can be constructed. Four
equations, since (L.3.1.5.7) produces two equations.

3.1.6 The Gram-Schmidt Procedure
In this section Susskind explains the Gram-Schmidt Procedure. What seems to me a bit
confusing is an inner product dealt with as a vector. See Figure 3.1, Legenda.

So, in the legenda, the expression for Vu should read

VZJ_ = V2 - (V2|V2)91 .

| think this to be a bit more elegant or correct.

Remark: In Lecture 7.2 another approach for the Gram-Schmidt procedure is presented.

3.2 The Principles

Susskind states The Principles of Quantum Mechanics(By the way the title of Dirac’s book) .
"An important consequence of the principles is as follows: The operators that represent
observables are Hermitian”. With help of the proof by contradiction and section 3.1.5 this
can be shown.

Let us proof it anyway. With the eigenvalues of the operator L and the eigenvectors, with
different eigenvalues, orthogonal, L must be Hermitian.

15



Proof

We presume L # LT and follow the notation of page 65 we write:

L|A;) = A4141),and L|Ay) = 4,]4,).

Now, create the complex conjugate of L|A;) = A|4;):

(ML = 2,24, (L.3.2.1)

keep in mind: use has been made of results of an experiment to be real numbers. Consequently, eigenvalue
of the operator L must be a real number(Susskind page 74).

Now, L|A,) = A,]4,).

Construct the inner product of {(A;|LT = A,(4,], (L.3.2.1), and |4,):

(M|LT)22) = A4, (A1145) . (L3.2.2)
Then, L|A,) = A,|A,), and form its inner product with {1, ] :

(AL A2) = A2{24[2;) . (L.3.2.3)
Subtract (L.3.2.2) and (L.3.2.3):

(/11|LT|/12) - (/11|L|/12> = /11(/11|/12) - /12(/11|/12)- (L3.2.4)

Since the eigenvectors are orthogonal, the right-hand sight of (L.3.2.4) is zero.
Then, (4, |LT — L|2;) = 0. Consequently L = LT - L is Hermitian.
End of Proof.

Remark:

This is just a part of the proof? Do we have to proof that the set of eigenvectors is complete?
Well, | consider this not to be that easy, though Susskind states otherwise on page 67: “The
final part of the theorem states that the eigenvectors are complete. In other words, if the
space is N-dimensional, there will be N orthonormal eigenvectors. The proof is easy”.

May the statement be not quite clear with respect to which proof is easy: the completeness
or the N orthonormal eigen vectors or both? Above | focused on the proof of the operator to
be Hermitian. Having done that, let us try to find an orthonormal base for a NxN Hermitian
operator with for example two eigenvectors with equal eigenvalues. Consequently, we have
N — 1 different eigenvalues with eigenvectors orthonormal. We assume two eigenvectors
|4,) and |A,) to have the same eigenvalue A. Can we find a new eigenvector normal to |1,)?
We follow Susskind. Consider an arbitrary linear combination of |1;) and |1,):

|A) = a|A;) + B|A,), a« and B # 0. There are two conditions: (1,|A) = 0 and (A|A) = 1. The
first condition gives us:

a{Az]41) + B{4;2112) = a{A;]41) + B = 0.

So,

(A,|1,) = %ﬁ = _ﬁoi*, then (1,]1,) = ~9F" Reminder: aa* = la|?.

aa aa*
The second condition gives us:

(]’ + (187 (@ldy) + BIA2)) = a’a + BB + &’ B(A1]A5) + B*aldylAy) = 1.
With the expressions for the inner products (1,|1;) and {(1,|4,) , derived above, this
expression becomes:

|a|? — |B|? = 1. We find for a: |a| = /1 + |B|? . Is this to expected? Yes, it is.

| start with |[4;) and |A,) to be orthonormal and construct a vector

|4) = al4;) + Bl42).

For this |A) to be normalized we have:

lal® + B> =1,

and

|| and |B]| both smaller than 1.

To visualise this, take two orthonormal basic vectors. Construct the diagonal and normalize
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the diagonal vector. To this end, a multiplication factor of%\/f(< 1) is needed.

In the case of degeneracy, | need to construct two mutually orthogonal eigenstates |A) and
|A,) . Furthermore, (A|A) = 1, || and || both must be larger than 1. Hence, |a| =

J 1+ |B|?is correct.

. . . . . T .
To visualise this case, take two normalized base vectors having an angle of 2 e

(A,11,) = %\/i . To construct a normalized vector |4), a multiplication factor V2(> 1) is

needed.
Well, let’s investigate the subject matter in a different way.
| found above:

(/12M1) = %ﬁ .

Then

|4) = alA) + BlA2) = a(|A1) — (12141} 242)). (L.3.2.5)
Hence,

(A14) = lal* (1 — [ {21217 , (L.3.2.6)

where use has been made of (1,]|4;) = 1 and (4,]4,) = 1.

Consequently:
1

e

Remark:|a| > 1. As mentioned above, for (1,|4,) = %\/E, la] = 2.

Plug |a| into (L.3.2.5)

4y = Pal=alAa)ite). (L.3.2.7)

1-| (A2 |24
where, without loss of generality, an arbitrary phase angle is neglected in « .
Multiply the bra (A,| into (L.3.2.7) and the orthogonality of |A) and |A,) is found. |A) has
been elegantly expressed in the basic vectors |1;) and |1,).
With the Gram-Schmidt Procedure the same result is obtained. Then,
|4) = |11) — (A2[21)|42). (L.3.2.8)
To find (A|A) = 1, | must divide (L.3.2.8) by /1 — | (1,]4,)|2.

la| =

We can expand into k(= 3) eigenvectors with the same eigenvalue and consequently N — k
eigenvectors with different eigenvalues. In words: For a vector space of dimension N we
have a NxN Hermitian operator. Suppose we have N — k orthonormal eigenvectors with
different eigenvalues and k eigenvectors with one and the same eigenvalue. Then we can
find k orthonormal eigenvectors by writing these vectors as linear combinations of the set of
k eigenvectors which span the subspace of eigenvectors of the Hermitian operator with the
same eigenvalue.

Question: An important question, at least to me, is: To what purpose do we need to create a
complete set of orthonormal eigenvectors? After completion of the set of eigenvectors the
eigenvalues are still the same. Well, to represent a general ket vector you need the complete
set. Think about three dimensional ket space. Using two basic vector means a two-
dimensional ket instead of the general three-dimensional general ket.
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Eigenvalues are important according to Principle 2(Susskind page 70): “The possible results of
a measurement are the eigenvalues of the operator that represents the observable.” On page
74 Susskind writes:” ......Secondly, the eigenvectors that represent unambiguously
distinguishable results must have different eigenvalues and must be orthogonal.” So, the
above question will not go away.

Dirac describes observables in paragraph 10. There he mentioned you need a complete set of
orthonormal eigenstates(vectors). That does not answer my question. Having completed the
orthonormal set, no new eigenvalue is found.

Note: Dirac, on page 32, proofs the theorem “Two eigenvectors of a real dynamical variable
belonging to different eigenvalues are orthogonal”. On page 30 one can read the following
statement: “The theory of eigenvalues and eigenvectors of a linear operator a which is not
real is not of much use for quantum mechanics”. On page 32 Dirac presents the proof that an
arbitrary ket can be expressed as the sum of eigen kets of a real linear operator L (notation
Susskind) which satisfies an algebraic equation: (L) = ¥*_, a, L% = 0.

Principle 2: The possible results of a measurement are the eigenvalues of the operator that
represents the observable, page 70. Susskind writes that he will flesh these Principle out,
since this statement is hardly self-explanatory. | do not know what fleshing out really
means.
On page 73, Principle 4 is explored. There (A|4;) = (1;|A)" has been used.
P(4;) is the probability of measuring A;. Any measurement creates a A;.
Hence,

P=%;P(4) =1
Back to page 34:

14) = X2,14:4{2;]4).
Then

(A] = 22,41 ANA] .
With (2;]2;) = &;; and {4:]4;) = (4:|4;)"

(AlA) = %3, A2 = P = 1.

3.3 An Example Spin Operators
The goal is to write down the spin operators as 2 X 2 matrices.
Susskind paid attention to the subtle relation between operators and observables.

3.4 Constructing Spin Operators

The first goal is to construct operators to represent the components of spin:

Oy, 0y, and g, .

Then, based on these spin operators a spin component in any direction is composed.

On page 76, Susskind applies the first three Principles as presented on pages 69 an 70, and |
suppose these Principles to be confirmed by experiments. So, the result of an experiment is
always one of the eigenvalues of the corresponding operator (Susskind page 71).

Dirac, in paragraph 10, used the expression: “It is reasonable.......... ”. No proof.
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Exercise 3.2: About a spin operator
Prove that Eq. 3.16:
((Jz)ll (02)12) _ (1 0 )
(0)21 (07)22 0 -1/
is the unique solution to Egs. 3.14 and 3.15.
With Eq. 3.14 we find two equations:
(0)11°1+(0,)12°0=1,
and
(02)21° 1+ (0,)22°0=0,
giving the unique solutions
(02)11 = 1and (0,)2; = 0.
Eg. 3.15 leads to two equations:
(0:)11° 0+ (0,)12-1=0,
and
(02)21° 0+ (0,)22 - 1 =1,
giving the unique solutions
(02)12 = 0and (0,)2, = —1.

With the information derived in the foregoing sections, including the Principles, Susskind
derived the expressions for gy, and o, .

3.5 A Common Misconception
Susskind dealt with the correspondence between operators and measurement. An example
is given on page 82.

3.6 3-Vector Operators Revisited

The two notions of vectors are summarized:

- the vector in three-dimensional space,

- the state vector.

Operators have a lot in common with 3-vectors. Susskind, page 83, : “..., it does no harm to
think of them in that way, ...”.

Then, the spin component of ¢ along the axis 71 is measured. The 3-vector character of g is
demonstrated. This leads to the general matrix representation of ¢ , Eq.(3.23).

3.7 Reaping the Results
About real calculations.
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Exercise 3.3: The eigenvectors and eigenvalues of on
Calculate the eigenvectors and eigenvalues of o,,.

_ (cos@ sinf )

" \sin@ —cos6/
Hint: assume the eigenvector A, has the form of

cosa
(sina)’

where a is an unknown parameter. Plug this vector into the eigenvalue equation and solve for « in terms of

6. Why did we use a single parameter a? Notice that our suggested column vector must have unit length.

A single parameter: there is one parameter in the matrix, 8. The column vector has unit length.

Consequently, cos?a + sin’a = 1.

| will use a more general approach.

n

cosf — A sin6

sinf —cos — Al ~ 0, for

The eigenvalues are found by the determinant (Chisholm and Morris)

nontrivial solutions.
Then,

(cos@ — A) - (—cos8 — A) — sinf - sinf = —cos? O + 12 —sin? 6 =0.
Hence, the eigenvalues are: 1 = +1.
With these eigenvalues we can find the ratio of the components of the eigenvectors. First find the
eigenvector |A;) and with eigenvalue 1 = 1. We chose the components of the eigenvector to be ; and £3,.
So,

(cos@ sinf )(ﬁl) _ (.31)_

sin@ —cos8/ \pB; B.)
(cos@ — 1)B; + B,sinf = 0 and
B1sin@ — (cos8 + 1)B, = 0.

o 0
Hence Pr _ _sind _ Cosfand B1 _ 1+cos® _ cosy
B2  1—cos6 sing £, ~ind sing'

With normalisation of the eigenvector

L1A) =1 =11 + |B2I?

we find ; = cosgand B2 = sing.

Now the same procedure for the eigenvector |1,) with eigenvalue 1 = —1. We chose for the components of
the eigenvector: y; and y,.

Similarly, we obtain

(cosB + 1)y, +y, = 0 and

y:15in8 + (1 — cos@)y, = 0.

.0 .0
—sinf sins cosf—-1 sinz
Hence 1 = =——2andl="Cr = 2
Y2  1l+cos6 cos V2 sinf cos

. I~ . .8 6

With normalisation of the eigenvector, the components are: y; = —sin> andy, = cos >

Check: (1,|4,) = 0 = |A;) and |1,) are orthogonal.

Based on the above results, an experimental prediction is made. It is about the probability of
observing g, = +1, page 87. Eqs. 3.24 and 3.25.

Remark:

On page 87 Susskind mentioned Principle 4 formulated on page 70, Eq. 3.11. The probability
P is already presented in Eq. 2.2.

Susskind also introduced Eq. 3.26 : (L) = Y}; 1;P(4;), the expectation value.

As we know, we can express a state vector |¥) in the eigenvectors |A;) as basis vectors and
use a; as probability amplitudes:

|¥) =2ia; |4;) -

Then (L) = (¥|L|¥) = Zillila) L(X; ai|A:)).

With the Kronecker Delta d;;, and L|1;) = A;|4;),
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(L) = Xia;aid;,

where a; a; is the probability P(4;) to find a particle in state |4;). So,

(L) = Xi LiP(4y).

On page 87 Susskind writes: “What is the probability of observing o, = +1? “

| consider this to be confusing. g,, is an operator represented by a matrix; +1 is an
eigenvalue of this matrix operator. So, equating the operator to the eigenvalue? On the
other hand, considering observables and operators. | do understand the formulation.

Exercise 3.4: The eigenvectors and eigenvalues of o, for spherical coordinates
Let n, = cosf, n, = sinfcosg, and n,, = sinfsing. Angles 6 and ¢ are defined according to the usual
conventions of spherical coordinates (Fig. 3.2 Susskind). Compute the eigenvalues and eigenvectors of the
matrix of Eq. 3.23.
Eq. 3.23:
n, n, —in,
In = (nx +in, -n, )
Then, with spherical coordinates

Fa

wln )
i
8
: the determinant for the eigenvalues is
cosf — 4 sinf(cosp — ising)| _ 0
sinf(cosg + ising) —cosf — A o

The equation for the eigenvalues is:
(cos@ — A) - (—cos — 1) — sinf - sinf - (cose + ising) - (cose — ising) =
= —cos?8 + A% —sin? B(cos? ¢ +sin? ) = 0.
Again we find A = +1.
For the eigenvector |A,) and eigenvalue 4 = 1, the components of the eigenvector are 8; and ;.
So,

( cosf sinf@(cosp — isimp)) <,81> _ (,81)
sinf(cosg + ising) —cos6 B> B,
Similarly, to Exercise 3.3, we have
0 4
% = (cosp — ising) ;i;ig =e %, and % = (cosp — ising) % =e %.
The components of the eigenvector |1, ) are, using normalization,
B = cosgand B, = sin%ei"’
Now, completely similar, for the eigenvector |1,) and the eigenvalue A = —1, the components (y;,y,) of

this eigenvector are, with normalization,
_ —ip o 6 _ [
Y1 = —e sm;and Y2 = cos.
Check: |1,) and |4,) are orthogonal.
Remark: e 7*® can be considered as a relative phase factor? Meaning?

Remark: Susskind alternately uses g, ¢ , 7 and n. A little bit confusing.
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Exercise 3.5: The independence of the coordinate system and probabilities

Work out a more elaborate example involving the directions 7 and M. In this setup the measuring
equipment for the spin not only ends up in an arbitrary direction; it also starts out in a different arbitrary
direction. Suppose the spin is prepared so that o,,, = +1.

Remark:

This is shorthand for the operator with eigenvalue +1.

| also assume that Susskind meant with the preparation o0,,, = +1, the probability to find the spin in the “up
position” is equal to 1. So, repeating measuring the spin in the 7 direction produces an eigen value of +1.
The equipment is then rotated to the 7i direction and (the eigenvalue of) g,, is measured. What is the
probability that the result is +1? Note that g,,, = @ - is similar to the convention we used for o,
(Eq.3.22). This a lot of work indeed. However, we don’t need ¢,,, =0 .7

Since the physics does not depend on a coordinate system, we align for example the z-axis with m direction
. Then we can use the same procedure as we did in Exercise 3.4. The probability P(+1) = |(u|B;}|?. With

B as found in Exercise 3.4 and (u| = (1,0): P(+1) = cos? g. The angle 8 given between 7 and 7.

Exercises 3.4 and 3.5 lead to the same eigenvalues and eigenvectors. This must be, since
physics is invariant for a coordinate transformation.

3.8 The Spin-Polarization Principle
Any state of a single spin is an eigenvector of some component of the spin.
Proof:
Any spin state can be represented by: |A) = a,|u) + ay|d).
There exists some direction i, such that according to the principle
a.f|A) = |A). (L3.8)
With Eq. 3.23 and [ A) in column vector representation, (L3.8) gives

( n, (Tlx - iny)> (au) _ (au)

(ny +iny) —n, ag/  \ag):

Solving for a,, and a; we obtain

ay(nZ+n2+nZ—-1)=0

and

ag(nZ+n2+n2—1)=0.

Excluding trivial solutions, a,, and a, to be zero, we have (nZ + n2 +nZ — 1) = 0
and that is to be expected. keeping in mind a;a,, + ajay = 1.

Consequently, |A) is an eigenvector of 6. | A).

Since |A) is an eigenvector of the operator 6.7 the expectation value of this operator is, with (L3.8) :
(6.7) = (A|G.7]|A) = (A|A) =1,

where the normalization of |A), aj,a, + aja, = 1 is confirmed.

End of Proof.

Question: | don’t understand(page 91): “On the other hand, the expectation value of the
perpendicular components of o (or G ) are zero in the state |A)”. Which are the
perpendicular components of o (or 6)? o, gy and g,?

Well, (A|o,|A) = aja, + aj,aq.

So? | think the key is (g,,) = cos 6. The result of Exercises 3.4 and 3.5. Then perpendicular
means 8 = 1 /2. For 8 = 0, we have the spin aligned along the z-axis and we find () = 0
and (ay) = 0.

Susskind mentioned that the squares of the expectation values of all three components of
the spin operator o or ¢ sum up to 1:

22



With the Pauli Matrices(Eq. 3.20), the column vector representation for |A) and the
definition of the expectation value you will find after some algebra:

(Alo,|A)? + ((A|oy |[AD? + (Alo,1AN? = (aay + ajag)? = 1. (Eq.3.27).

Note: Dirac dealt with operators in chapter Il. What intrigues me is his remark on page 28:
“Thus the conjugate complex of the product of two linear operators equals the product of the
conjugate complexes of the factors in reverse order. As simple examples of this result, it
should be noted that, £ and n are real, in general &n is not real”. Yet | could not find an
example.

Lecture 4. Time and Change.

In the preceding lectures the state-vectors have been analysed at a time, now it is time for
“time and change”. The time development operator, determinism in quantum mechanics
and the Hamiltonian are introduced.

4.1 A Classical Reminder
In this introductory section Susskind made the important statement:”... information is never
lost.” The minus first Law.

4.2 Unitarity
A closed system is considered at time t in the quantum state W(t).

Remark: U as presented in Eqg. 4.1 is the time-development operator for the system. |
presume for every vector space or Landscape(Susskind) of vector spaces. The fact UT(t)U(t)
behaves like the unit operator I is related to the normalization of |¥(t)) stays normalized.
On the pages 94 and 97 Susskind mentions Conservation of Distinction. | suppose this law is
proved by measurement of observables, represented by the operator working on the state
vector.

4.3 Determinism in Quantum Mechanics.

Susskind’s Caveat: Classical determinism allows us to predict the results of an experiment.
The quantum evolution of states allows us to compute the probabilities of the outcomes of
later experiments.

4.4 A Closer Look at U(t)

Susskind starts with the requirements on U(t).
- A linear operator,

- Conservation of distinction.

Consequently, “time evolution is unitary”.
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Intermezzo A Universal Unitary 2-D Matrix with Elements represented by Real Numbers.
| assume the matrix elements of the 2-D unitary matrix U to be real numbers.
_(a b
U= (C d) .
In addition | consider U to be a Hermitian operator. Then,

Uz(z Z),andufz(z Z).

Next, let us find out about:
UTUzlﬁ(a b)(a b)z(l 0)‘

b d/\b d 0 1
Resulting into three equations:
-a?+b*=1,
-ab+bd =0,
and
-b2+d?>=1.
After some algebra, with b # 0, you obtain
a=-d,
and
b=+V1—aZ.
Hence:
b +0,
U= ( a +V1 - a2>
+V1-a? -a '
andb =0
1 0
v= (0 —1)'

Exercise 4.1: The unitary operator and the inner product of two vectors

Prove that if U is unitary, and if |[A) and |B) are any two state-vectors, then the inner product of U|A) and
U|B) is the same as the inner product of |A) and |B). One could call this the conservation of overlaps. It
expresses the fact that the logical relation between states is preserved with time.

U is unitary and UTU = I.

The inner product U|A) and U|B) is (B|UTU|A) = (B|I|A) = (B|A).

4.5 The Hamiltonian

Susskind builds up changes of time by combining many infinitesimal time intervals €. He
mentioned that when € is zero it should be obvious that in this case the time-evolution
operator is merely the unit operator I. It is obvious when considering Eq. 4.1 with t = 0:

|W) = I|¥).

Remark: On page 101 Susskind writes: “.......also says that H is a Hermitian operator. This has
great significance. We can now say that H is an observable, ......”.
| suppose H to represent an observable.

On page 102 Susskind derives the generalized Schrédinger equation, Eq. 4.9:

aw _
o = iH|V).

Remark: Susskind stated the following: “We originally set things up so that the time variable
is zero, but there was nothing special about t = 0. Had we chosen another time and done the
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same thing, we would have gotten the same result, namely, Eq. 4.9”.
The equation UTU = I:
Are we allowed to assume U to be Hermitian: UT = U?

U to be Hermitian gives four-time independent solutions: (ibl -If)l)

To demonstrate this, with U a 2 X 2 matrix with elements u;;:
_ (U111 Ug2
U= (u21 uzz)'
Then,
+ 7 <u11 u;l) Uqq Uqz — 1 O )
Uty - u;z Uyp (u21 uZZ) (0 1)
1 0 )

Assuming all the matrix elements to be real, we finally obtain: U = ( 0 +1/)

With Eq. (4.1) wecansetU = I fort = 0.

Note: In the Feynman Lectures on Physics Vol. Ill chapter 8-4 “How states change with time”
the above result for the generalized Schrédinger equation is derived a bit more elegantly.
Feynman derived the Schrédinger equation at time t and did not use t = 0. Furthermore,
instead of the state vector the equation is derived for the probability amplitude. In this way it
is shown that the Schrédinger equation translates directly into the equation for the
probability amplitude (and the wave function; see later). Feynman also wrote: “The
Hamiltonian has one property that can be deduced right away, namely that H ;-‘]- = Hj;. This
follows from the condition that the total probability that the system is in some state does not
change”.

Question: There is something | do not understand with respect to the to the principle of
unitarity (page 100) Eq. 4.5:

Ut(e)U(e) = 1.

Plugging the expansions of UT(e) = I + ieH' and U(€) = I — ieH into the unitarity
condition(principle) we obtain

I+ ieH" )(I — ieH) = I . Expanding to first order in €, Susskind finds: H' = H,Eq.4.8.
When | expand the unitarity condition the result is: ie(HJr - H) = —e?H™H or

H'— H = ieH™H .

What does expand to first order in € means in this respect, neglecting the right-hand side of
HT — H = ieHTH? Well, | think this is correct. The term with € can be neglected, a small
quantity. SoHT — H = 0.

The confusion arises when € is applied for the deduction of the time-dependency of the
state vector |¥). Then € —» At — dt in the limit and € cannot be neglected.

Well, the limit € > 0 must be considered.

Why did Susskind use the epsilontic approach? Is this in honour of Euler??

Remark:

With the procedure at the bottom of page 101, Eq. 4.6 can be written as:

U(E);U(O) = —iH > % = —iH ,where U(0) =1,

2 See: A most elegant equation, Euler’s formula & the beauty of mathematics by David Stipp.
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where use has been made of Eq.(4.1).

And with Eq. 4.7 :

avt . . . dUu - aut

— = {HT. With H Hermitian — + — = 0.

dat dt dt

| am not so sure whether | am allowed to manipulate the time evolution operator in this

way.

Remark: Susskind (page 101) writes below Eq.4.8: HT = H , “This last equation expresses the
unitary condition”. | prefer: this last equation is derived from the unitary condition Eq. 4.5.
Feynman concluded the Hermitian character of the Hamiltonian to be obtained from the
total probability.

4.6 What Ever Happened to h?

Here the important analysis of dimensions is used.

Consequently, Eq.(4.9) is made consistent in terms of dimensions — Eq.(4.9).

Note: Susskind paid some attention to: Why is Planck’s constant so small? He is in good
company. Schrédinger discussed this too in a slightly different manner: Why are atoms so
small? This scale issue is also discussed by Feynman in Part | Chapter 19-2.

4.7 Expectation Values

In this section the idea of the average or mean value is discussed.

On page 105 Susskind mentioned for the first time Dirac and the bra-ket notation in relation
to the notation (L). This is rather meagre since we used the bra and ket algebra for more
than 80 pages already.

The mathematical formulation of an average is given in Eq.(4.11).

At the top of page 106 Susskind presented the basic hypothesis of statistical theory.

In Eq.(4.14), a quick rule to compute averages is presented

Page 108: the inner product of g, |r), Eq. 3.21, and (r| gives (g,) = O:

(0,) = (rlo,Ir) = - (ul +(d]) 0, 75 (1) + 1)) = 5 (] + (@D () — |d)) = 0.

4.8 Ignoring the Phase-Factor

In lecture 4.8 Susskind explained the ignoring of the phase-factor.

This is illustrated by comparing two state vectors differing just a phase factor.
This can be found in Dirac on page 46.

See Exercise 3.4, page 21 of my notes: the relative phase factor.

Let us have a closer look at the phase factor in this exercise.

The two base vectors obtained in Exercise 3.4 are:

=(5)=( 3,).

eig"sin;
n=(y,)=

A state |y) can be expanded into the base vectors

[Y) = ay |B) + azly).

i . 0O
—e l"’sm;

0
COS—
2
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Next we try to find out about the observable A and determine its expectation value
WIAIY) = (@i(B] + a3(yDA(ay |B) + azly)).

To determine the role of the phase-factor, | use the column representation of the base
vectors and matrix representation of the observable. A Hermitian matrix which | assumed to
be diagonalized.

So, A = (g 2)

Then we have:

(WIAlY) = (ai(B| + az{yDA(a1 |B) + azly)) =

cos—
6 _i, . 6 in . 0 ] a 0
=[a{(cos—,e ”Psm—)+a§ (—e“”sm—, cos—)]( ) a | . 29 +
2 2 2 2/1N0 b e'¥sin—=
i .. B
—e ””sm;
0(2 0 =
cos —
2
acos?
0 _i, . 0 0. 0 0
=[a{(cos—,e “Psm—)+a§ (—e“”sm—,cos—)] a; , 29 +
z 2 2 2 be'?sin =
2
o . 0
—ae "sin- . .
o . o a,aia i . a,a1b .
a, 0 2 =a{alac052;+a{albst;—Le””smB+22—1el“’51n0+
b cos—
2
_aiaza ajazb

e~¥sin@ + Te“"” sin 6 + a;a,a sin? g + aja,b cos? g .

We do have some more information. From the eigen values and eigenvectors of A follows
a=bh.

Hence

WlAlY) = a(aia; + aza,).

So, we can ignore the phase factor?

Well, the above result comes as no surprise.

With a = b, we have

1= 9= D=as 9=u

Consequently,

W1AlY) = a@lIy) = a@lyP) = a(aja; + a;a;) = a.

So what about

a c
A= (c* b) ?
WlAlY) = (ai(B] + az{yDA(ay |B) + azly) =

6
coS—
0 _i, . 8 i . O 0 a c
=[a{(cos;,e “Psm;)+a§(—e“"sm;,cos;)](c* b) a;| 29 +
e'?sin—
2
ip .. B
—e l"’sm;
az 0 =
cos —
2
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0 o . 0
0 . 0 , 0 0 acos;+ce"”sm;

= [a{ (cos; ,e“‘psing) + a5 (— e“”sin; , COS 5)] aq 0 , o |t
c*cos;+ be“”sin;

i . B 9

—ae ‘4"51n5+cc055 0

a, = aja; a cos®=+
2

i . 0O 0
—c*e “Psm5+ bcos;

aja;c aja;c*

e sin@ + e" % sinf +

asaia o - . -0 6  asaib i, .
—=21-¢¥sin —a,a,c sin? >t azac’ cos? -+ %e“” sin@ +

0
224
2

50
+aja,b sin? >~

ajaa  _

0 . 6 —2i0 - ajazb
e ' sin @ + aja,c cos? -~ ajasce 219 sin -z

e "sinf +
arsa,c i . asa,c*
— 22 p¥ginh — 22—

N[

+azaza sinzg e~ sin 6 + a;a,b cos?
Now, it is not clear whether the phase shift has a role to play.
Well, may be using the matrix for g,, in Eq.(3.23) we could find out about the phase factor.
Furthermore, by averaging of ¢ over 2m , the phase factor disappears. Are we allowed to do
the averaging?

Let us analyse the matrix g,, = (sin H(CO(S:(:DS-?- i sin @) st g(co_sz)s el st (p)>.
So,

a =coso,

b =—cos0,

c =sin@(cos@ — isinp) = e~ ¥ sin 6,

and

c* =sin@(cos @ + isin @) = e sin 6.

Then, we obtain:

LG ig gin g = G4SN0 ip G g — Lyg sin? e,
2 2
_AaC g g = wei‘l’ sin@ = %a{al sin® 6,
L BNl g G g — —%ei‘/’ sin 6 cos 6,
- Mei‘/’ sinf = — @201 e'? sin 6 cos 0 ,
028 g i g = — 492 =09 gin 9 cos 0,
- —aja,cte 2% sinzg = —aja,e'? sinf e~ 2% Sinzg = —ajaze”' sin 6 sin’ g ’
- Me‘i‘/’ sinf = —@e‘i"’ sin 6 cos 9,
-—%eiq) sin@ = —%e‘i"’ sin@ e'?sinf = —%sinzG ,
-—%e‘i“’ sinf = —%ei"’ sinf e sinf = — —%Sinzé’ :
Hence, there remain some expression with a phase factor:
- —%ei"’ sin 6 cos 8 — %ei"’ sin6 cos @ = —%ei‘p sin 20,
- —ajaye”' sin @ sin? g )
-— %e"iq’ sin @ cos 6 — %e‘w sin@ cos 0 = —%B_W sin 26.

To be expected?
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4.9 Connections to Classical Mechanics

Susskind: “The average, or expectation value, of an observable is the closest thing in
quantum mechanics to a classical value.”
Then, the time dependence of expectation values is discussed.
The concept of commutator is presented based on Eq.(4.16).

For any pair of operators, L and M page 111:

[L,M] = —[M,L].

Well,

ML - LM = [M,L] > —ML + LM = —[M, L].

Exercise 4.2: M and L are both Hermitian, i[M, L] is Hermitian.
Prove that if M and L are both Hermitian, i[M, L] is also Hermitian. Note that the i is important. The
commutator is, by itself, not Hermitian.
Proof:
Well, first not a real proof. A demonstration. We write the matrices M and L in components,
myy My lin Ly
M= (miz mzz) and L = (liz 122)’
and calculate i[M, L] = iML — iLM. Having done this, calculate (i[M, L])T. By comparing the components
of i[M,L] and (i[M,L])T , we see i[M, L] to be Hermitian.
A real proof is the following:
With [M, L] = ML — LM and (ML)" = LTM" , we have
[M,L]" = (ML)t — (LM)" = L'M'" — MTL" = LM — ML.
In general, LM — ML + ML — LM.
Now (i[M, L))" = (iML)" — G(LM)" = —iLM + iML = i(ML — LM) = i[M, L].
Hence i[M, L], is Hermitian.
End of Proof.

Then, Poisson brackets are introduced again. Susskind demonstrated the close relation
between commutators and Poisson brackets.

Remark: In the text of page 113 Susskind mentioned G instead of H.

Exercise 4.3: The identification between commutators and Poisson brackets
Go back to the definition of Poisson brackets in Volume /(The Theoretical Minimum Series) and check that
the identification in Eq. 4.21 is dimensionally consistent. Show that without the factor A, it would not be.

Proof: the Poisson bracket is defined in Lecture 9 of Volume |, Eq. 9 page 172:
dF 8G  OF 8G
F =Y(——-—
{F.63 Zl(aqi op;  9p; 5(1i)'
where F and G are any two functions of phase space.
Given the dimension of 7 on page 103, kgm? /s , we learn that the dimension of & corresponds with the

dimension of (g;p;)~!. Where g; and p; are the coordinates of phase space.

4.10 Conservation of Energy
Attention is paid to the meaning of conservation in quantum mechanics.

A quantity Q is conserved when, Eq.(4.19),
aQ

—=0.

dt
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Remark: Susskind writes on page 115 that “...if [H, Q] = 0, then [Q?, H] = 0, or even more
generally, [Q™, H] = 0, for any n.”

We know [H,Q] = 0,so HQ — QH = 0.

Multiply the HQ — QH = 0 to the left with @ and add to the left hand side and the right
hand side of the equality sign HQ?, we have

QHQ — Q*’H + HQ? = HQ? or

QHQ —HQ? - Q*H+ HQ?*=0

(QH-HQ)Q - Q°H+HQ*=0- Q*H—-HQ* =0,

so, [Q%, H] = 0.

The same procedure and the method of induction can be used to prove [Q™, H] = 0.

Proof by Induction

Assume [Q™, H] = 0, to be true,

HQ" _ QnH =0 QHQn _ Qn+1H + HQn+1 — HQn+1 =

— Qan _ HQ71+1 _ Qn+1H + HQn+1 =0 = (QH _ HQ)Qn + HQn+1 _ Qn+1H =0.
Then,

HQﬂ+1 _ Qn+1H =0.

Hence,

[Qn+1,H] =0.

End of Proof

The commutation of Q with the Hamiltonian reflects the expectation values of all functions of
Q to be conserved.

4.11 Spin in a Magnetic Field

This section is about the application of the Hamiltonian for a single spin.

Susskind mentioned the time-dependence of an observable to be given by the commutator
of the observable with the Hamiltonian, Eq.(4.19) shorthand for Eq.(4.18):

L i
== —[LH]

Of importance is to find out about the Hamiltonian to describe the spin in a magnetic field B.
The Hamiltonian, analogous to a classical spin in a magnetic field,

H «x G- B = 0B, + 0B, + 0,B,

On page 117, Susskind applies Eq.(4.18) or (4.19).

With the expression for the Hamiltonian, Eq.(4.23) , Egs.(4.25) are found.

Note: the “dot” above, e.g., 0, = 0y, is the fluxion notation of Newton.

So,
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Exercise 4.4 About the commutation relations of the Pauli matrices

Verify the commutation relations of Egs. 4.26.
With the Pauli matrices summarized on page 347, | verify one of the commutation relations:

[ax, ay] = 2ioy,.
[0, 0y] = 0,0, — 0,0y, and, using, 0, = ((1) _01), 2io, = (201 —021')'
Furthermore

o,=(0 1)

and consequently,
[Jx, O'y] = 2io,.

Remark: Eq. 4.17 reads: % (L) = %([L, H]) where L has no explicit time dependency. In

Mahan you can find in the homework of Chapter I, Introduction, %(L) tobeOinan
eigenstate of H with discrete eigenvalues. Well, with Eq. 4.28, Eq. 4.17 can be written as:

d j - iE;
a0 = (| (HL — LI)|E}) = L (B E;(L — DE;|E;) = T2 (Ej|(L — LDE;) = 0.
Remember: eigenvalues of Hermitian operators are real; Susskind page 63. This is not all.
When the eigenvectors form a complete set(page 66 and 67), any state vector can be

expanded in the eigenvectors. Consequently, % (L) = 0 for any state vector with L not

explicitly dependent on time.

4.12 Solving the Schrddinger Equation

The time-dependent Schrédinger equation Eq.(4.10),
aw) _

ho = —iH|W),

is the basis for this section.
The time-independent Schrodinger equation or eigenvalue equation is :

H|E;) = Ej|E;), Eq. (4.28).
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Exercise 4.5: The energy eigen values and eigenvectors of the spin Hamiltonian
. ~ how - A
Take any unit 3-vector 1 = (nx, ny, nz), and form the operator H = 7“) o.1.
Find the energy eigenvalues and eigenvectors by solving the time-independent Schrédinger equation.
Recall that Eq. 3.23 gives 0, = & .7, in matrix representation. A 2 X 2 matrix :
( n, n, — iny>
Oy = ) .
n, +in, -n,
There are two approaches for this exercise.
The first, 1), is use of the results of Exercise 3.4 and
the second, 2), to start with the time-independent Schrédinger equation.
ad 1) The eigenvalues of o, , found in Exercise 3.4, are +1. To obtain the energy eigenvalues of the operator
H multiply £1 with hTw , and both energy eigenvalues are obtained. The eigenvectors are the same as found

in Exercise 3.4:
cos - —sin;
|E1) = ( . 9) and |E;) = ( 0 ).
sin— cos—
2 2 0
These column vectors can be rewritten in Cartesian coordinates with goniometric relations sin; =

V(@A —cos0)/2, cosg =,/ (1+cos8)/2,and n, = cosO (Lecture 3.7).
n, n, — iny)
n, +in, -n, J
With Eq. 4.28, the time-independent Schrédinger equation, we obtain with ¢,, and H
ToulEj) = E|E),j=12.
The eigenvalues of the matrix are found with the determinant:

ad 2) 5.ﬁzan=<

hw hw .

S - (e —iny))
hw , hw -
7(nx+my) —7le —Ej

giving —[(hz—wnz)2 - E}z] - (hTw)z (n2 — nf,) =0.
With nf +nj +n; =1,
Ej =+,
Remember, this shows once more the Spin Polarization Principle.
Now for the eigenvectors with column presentation
|E-) = (a) e s (a) = +rﬁ(6¥) we find two equations.
J B) 2" \B) T = 2 B
These are for E; = + % :
n,a + (nx - iny)ﬁ = aand
(nx + iny)a —-n,B =p.
The preceding two equations give us with the ratio “/ﬁ , the eigenvector going with Ej:
ny—in nz+1
a/ﬁ - :Z—ly »or a/,B - ny+iny, |
With normalization
a‘a+pp =1,
and
nZ+ni+n;=1,

1 1 —Ny + iny
- ﬁ\/l—nz( 1-n, ).

. . h . .
With the eigenvalue E, = — 7“’ , the two equations for components of the column representation of the

The eigenvector in column representation is | E;)

. . hw a ho &
eigenvector |E,) are derived from ~ On (B) === (B) :
n,a + (nx - iny),B = —a and
(nx + L'ny)a -n,B =-p0.
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These two equations give another ratio 0‘/[), for the eigenvector going with E,:
a _ _nx—iny a - _ 1-ny,
/ﬂ - ng+1 or /ﬁ Ny+ing |
With normalization
aa+pf =1,
and
ni+nd+n;=1,
inx—iny
V2 J1+n, '
1
ﬂ = Eﬂ 1+ n,

The eigenvector in column representation is |E,)

a=—

1 1 —nx+iny
T V2 1‘*‘nz( 1+mn,

After inspection we find (E; |E,) = 0.

Notice: the complex factor in front of the square root can be written as a phase factor using

n% +n2 +nZ = 1. The phase factor can be written as e??, where ¢ is the angle between in,, and n, in the
two-dimensional complex sub-space.

Remark:

On page 121 Susskind writes: “...the eigenvectors form an orthonormal basis...”. Do they?
The Fundamental Theorem in Lecture 3.15 says: “If .... are two unequal eigenvalues of a
Hermitian operator, then the corresponding eigenvectors are orthogonal”. May be Susskind
uses orthonormal and orthogonal alternately. When you express the eigenvectors in polar
coordinates and neglect the phase vector e ™' it is a bit more straightforward to show that
the eigenvectors are normalized and orthonormal(See exercise 3.4).

On pages 121-124, Susskind derived the time dependent state-vector |¥(t)) , Eq.(4.33).

4.13 Recipe for a Schrodinger Equation.

In this section the results of Lecture 4.12 have been summarized: a recipe to obtain the
solution of the Schrédinger equation.

In Eq.4.33, the time-dependent solution of the Schrédinger equation is presented.

In the following exercise the recipe is applied.

The result is the possibility to predict the probabilities for each possible outcome of an
experiment as a function of time.

In the exercise, at time t, a measurement is g,, is made where the initial state is |u).

The final observable is g,.

Now, | like to draw tour attention to pages 12 and 13: Lecture 1.4 Experiments Are Never
Gentle “.....make an intermediate measurement(observation), and turn it(the apparatus)
back to its original direction. Will a subsequent measurement along the z-axis confirm the
original measurement? The answer is no”.

33



Exercise 4.6: Application of the Schrodinger Ket Recipe for a single spin
Carry out the Schrodinger Ket recipe for a single spin. The Hamiltonian is H = %h o, and the final observable

is g,. The initial state is given as |u) (the state in which g, = +1).

After time t, an experiment is done to measure o,,. What are the possible outcomes and what are the
probabilities for those outcomes?

Remark: before starting the recipe: | do not know what Susskind meant with final observable! May be it is
somewhere hidden in the book.

The recipe: Step by Step.

1) Derive, look up, guess, borrow, or steal the Hamiltonian operator H.

The Hamiltonian operator is given: H = %h
2) Prepare the initial state | (0)).

The initial state is given: |#(0)) = |u), the state in which o, = +1.

3) Find the eigenvalues and eigenvectors of H by solving the time-independent Schrodinger equation,

ay.

H|E;)) = E;|E;):
hw
2 —
hw |EJ> - E]|EJ>
0 -
2
The determinant for the eigenvalues is: | 2 oo =0,
- - E;
then, £, = ihTw.
The eigen vectors:
hw 0
7 a _ fﬁ a
0 _hw ()= =5 (p)
2
hw
For E; = <
a=a,
—B =5,
we have f = 0, and with normalization a = 1.
Hence
(1
w
ForE, = -5
a=-a,
_.8 = _.81
we have a@ = 0, and with normalization § = 1.
Hence
_ (0
IE2) = (7))

4) Use the initial state vector to be |u), along with the eigenvectors |Ej) from step 3 to calculate the initial
coefficients a;(0):
a;(0) = (Ej[u).

- - 1\ _
Then a,(0) = (E,[u) = (1 0) (O) =1,
and

1

@ (0) = (E;lu) = (0 () =0.
5) Rewrite |#(0)) in terms of the eigenvectors |Ej) and the initial coefficients a;(0):
1#(0)) =3 a;(0)|E;) = [¥(0)) = |Ey).
6) In the above equation for [¥(0)), replace each @;(0) with a;(t) to capture time-dependence. As a result,
|#(0)) becomes | (t)) : |¥ (L)) = % (xj(t)lEj>.
7) Use Eq. 4.30: a;(t) = aj(O)e_ﬁEft

E:

L
replace each aj(t) with aj(O)e'ﬁ i* and the eigenvalue E; = h7w:
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¥(©) =%, a;(0)e | E;) = eT /2 |E).
Now, at time t, t; say, the experiment is done to measure g,,. The operator for g,, is the matrix ((l) _()l)
So,
0 —i _ (0 =0\ —iwt)2 _ (0 =iy b1y ety ey
(i o)ll‘u(t)) _(i o)e |E1)_(i o)e ’ (0)_6 ’ (i)_le ’ (1)_

_i(wt-m) 0
2 (1) = |¥(t)),fort =t,,

=e

or
wtq—T)

_i
P(t))=e 2z |E).
To predict the probabilities of the measurement o,,, we need the eigenvectors of the matrix

(? _Ol) The results of this exercise are presented in the Appendix and explained in detail in Lecture 3.4. 1

present here the results.
The eigenvalues are 4; = +1.
The eigenvectors which comply with normalization are

1
) = (| = 1) = Z(IE) + i |E2)),
N
and
1
vz

2y = (%% | = 122) = S (IE) = i) .

Sl

Now, we need to calculate the two probabilities for both eigenvalues:
Py, = P ()1 and Py, = (P (t)14)1
Plug the results for t = ¢y into Py, = [(¥(t1)]11)|?%, and you find after some algebra with complex numbers:

Py = (DI =3,
consequently

1
P, = K¥(t)I)]° ==

=-.
This is what we learned and should expect.

| suppose the final observable g, to be the observable at t = t, with t, > t;. After the observation g, the
system is in the state |1,) or |1,) , which one we do not know. When we make the observation o, it is to be

expected to find again equal probabilities.

So, with g, = ((1) (1)) we find for the eigenvalues y; = 1. The eigenvectors are
1
vz 1
) ={ % | = n) =5 (E) + |E)
vz
and
L
vz 1
v2) =( 55 | = Ira) = 5 (1B = |E)).
vz

What about the probabilities?
P,. = [{A1ly1)|?, under the condition |1;):

P, = %(1 -+ = % . The probability to be in |4;) is % So the total probability to be in |y;) startingin

. 1 1

M—l) ISP),1 E=Z

Then we have: P, = [{251y1)]|?, under the condition |4,). So the total probability to be in |y;) starting in
. 1 1

M—Z) ISPyl'Z=Z.

Now the probability P,, = [{(A11y2)|? starting in |A;) is P, % = %.

The last probability to calculate is P, = [{A;]y2)|? starting in |A,) is P, % = i
Obviously, the total probability is equal 1.
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4.14 Collapse

Lecture 4 concludes with the section about the collapse of the wave function of which the
above exercise comprises an example. See also Dirac page 36.

An important remark by Susskind: “Nevertheless, it is fair to say that between observations,
the state of a system evolves in a perfectly definite way, according to the time-dependent
Schrédinger equation.”

At the top of page 127, Susskind describes the phenomenon of collapse.

This leads to the conclusion for the need to describe the act of measurement(observation)
by the laws of quantum mechanics.

Lecture 5. Uncertainty and Time Dependence.

5.1 Mathematical Interlude: Complete Sets of Commuting Variables

5.1.1 States that Depend On More Than One Measurable

A spin is an illustrative example of measurables, observables.

Susskind presented two examples of systems consisted of more than one spin. There are
multiple observables that are compatible, i.e., their values can be known simultaneously.

Two examples are presented:

- the three position coordinates of a particle,

- a system composed of two physically independent spins.

Susskind discussed the latter example on the pages 130-133. It is about two different
operators, specified at the bottom of page 131 and on the following pages of this section.
On page 133 Susskind writes: “If an operator annihilates every member of a basis, it must
also annihilate every vector in the vector space”. Why? Since any vector can be constructed
by the members of that basis.

Important conclusion on the same page: “......, the condition for two observables to be

simultaneously measurable is that they commute.”, illustrated by Eq. (5.1):
[L,M]|A4,u)=0.

The complete set of commuting observables is introduced.

5.1.2 Wave functions
In this Lecture, the concept of wave function is introduced.
Susskind defined an orthonormal complete set of basis vectors, generally written as:
|a,b,c, ....). | suppose, this general expression reflects the set:
|a), |b), |c)," ....and the eigenvalues are a, b, c, .... of the complete set of commuting
observables A, B, C, ...".
Note: this sentence summarizes almost all the theory presented up to page 134. In addition,
about A4, etc: observable or operator? It is subtle.
The arbitrary state vector W is expanded in terms of the complete set of the basis vectors:
|¥) =y (a)|a) + P(b)|b) + P(c)[c) + -
Since, the basis is an orthonormal set, the inner product, Eq. (5.2)
(a|¥) = Y(a)ala) + P (b){alb) + P(c){alc) +, ...= P(a).
The coefficient Y(a) is called the wave function.
The probability P(a) for the commuting observable A to have the eigenvalue a,
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A|¥)=al¥),
P(a) =y (@y(a) = [P(a@)|?, etc.

5.1.3 A Note About Terminology
In this part of the lecture, Susskind paid attention to the various notations used. As
mentioned by Susskind, it is helpful “to realize a wave function can represent a state vector”.

5.2 Measurement

In this Lecture the concept of measurement and commutation is discussed, page 137.
Then, Susskind returned to the single spin and a 2 X 2 Hermitian matrix, and explained this
matrix to be represented by a sum of the three Pauli matrices and the unit matrix.

Exercise 5.1: A 2 X 2 Hermitian matrix can be written as a sum of four terms.
“Any 2 X 2 Hermitian matrix L can be written as the sum of four terms,
L = aoy + boy + co, +dI,
where a, b, c, and d are real numbers.”
Verify this claim.
I’s about the spin operators:
0 1 0 —i 1 0 1 0 c+d a-—ib
L=a(1 0)+b(i 0)+C(0 —1)+d(0 1)=(a+ib —c+d)'

An Hermitian matrix: the diagonal elements being real and the other two being complex.

5.3 The Uncertainty Principle
Uncertainty is one of the hallmarks of quantum mechanics, Susskind.
In this Lecture the general form of the uncertainty principle will be derived.

5.4 The Meaning of Uncertainty

Susskind introduces a new operator A defined to be 4 = 4 — (A),

where (A) is the expectation value, a real number.

The uncertainty in A is the so called standard deviation.

On top of page 141 Susskind writes: “The eigenvectors of A are the same as those of A and
the eigenvalues are just shifted so that their average is zero as well”. Maybe it is just obvious
but let us have a look.

For this we will use, as shown by Susskind, the identity operator I, in order to transform the
expectation value (A4) into an operator,

A=A- (Al

For a given state |¥) :

A|Y) = (A—(A)D|¥) = A|¥) — (A |¥P).

Furthermore, we use the notation of Susskind for eigenvalues a of the operator A. Then,
AlY) = A|¥) — (D|¥) = a|?) — (D]¥) = (a —(A)|¥) .

Page 141 : “In other words, the eigenvalues of A area = a — (A).”

In addition Susskind writes: “The probability distribution for A is exactly the same as the
distribution for A except that it is shifted so that the average value of A is zero”.

Let’s find out and use the notation of Susskind.

(P14|¥) = (4) = XaaP(a).

Now,

37



(P1A|P) = (P|(A = (AD|¥) = (P|A|¥) — (PA|P) = Xqa P(a) — (AXP|¥) =
2aaP(a)—(A)=0.
The square of the uncertainty of A, (AA)? is presented in Eq. (5.3).

5.5 Cauchy-Schwarz Inequality

The basic mathematical inequality is the familiar triangle inequality.
See Figure 5.1.

5.6 The Triangle Inequality and the Cauchy-Schwarz Inequality

With help of a picture of the triangle, Figure 5.1, Susskind derived Eq.(5.9),

21X[|Y] = KX]Y) + (Y1X)],

where |X| and |Y| represent the length of the vectors, Figure 5.1 .

This equation represents the Cauchy-Schwarz inequality, leading to the uncertainty principle.

5.7 The General Uncertainty Principle

The uncertainty principal is presented in Eq.(5.13), derived from Eq.(5.9):
AAAB >~ |[(¥|[4, B]|¥).

In the next exercise we pay attention to the derivation of Eq. (5.13).
There | assume (AA)? = AA?, page 141.
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Exercise 5.2 Some aspects of the Uncertainty Principal

1) Show that (A4)? = ((A)?) and (AB)? = ((B)?).
On page 141 Susskind: (AA)? may be written as (AA)? = (¥ |(A)?|¥).
With the notation (¥|(4)?|¥) = ((4)?), we have (AA)? = ((4)?).
I am afraid this is just playing with symbols and no proof at all. We have to proof it, using Eq. (5.4):
(84)% = (P|(A)*|¥) = Xi(a; — (A)?P(a) , (L5.1)
here, for convenience, a notation slightly different from Susskind’s is used.
a; are the eigenvalues of operator A with eigenvectors |a;).
Remark: Susskind introduced (L5.1) or Eq. (5.3) as a definition.
Now we expand the left-hand side of Eq. (L5.1), with A = A — (A4) :
(PIA)?2|W) = (PI(A - (AW) = (P14%|W) — 2(ANP|AIY) + (P|(A)*|¥) =
= (W|42|¥) — 2(4)" + (A)(W|¥) = (W|A%|¥) —(A)". (L5.2)
Keep in mind: in the operator mode (4) should be read as (A)I.
The right-hand side of Eq. (L5.1) is Y.;(a? — 2a;{A) + (A)Z)P(al-) =
= Yila?P(a) — 2a;(A)P(a) +(A)* P(a;)]. (L5.3)
With (A) = Y;a; P(a;),andY;P(a;) = 1:
Eq. (L 5.3) results into:

(A4)% = 3 a?P(a)) — (4)° . (L5.4)
The equality (L5.1) can be written with (L5.2) and (L5.4) as
(P142|%) —(4)* = 3;afP(a;) —(A)". (L5.5)

Does (L.5.5) lead to a contradiction?

Now we investigate whether or not (¥ |A2%|¥) = ¥; a? P(a;).

To this end we expand |¥) into the basis of eigenvectors of the operator 4 :

[¥) =i a;la;).

Let A operate on |¥), then,

AlY) =3 a; Ala;) = 3 aiai]a;)-

Now flip the ket | ') into the bra (¥], and we have (¥'| = ¥ a] (ajl .

Let A operates on (¥|, this becomes (ll’|A =2a; (aj|A =2a; a]-*(ajl.

The inner product of (¥|A4, and A|¥), results into:

(P|A%|P) = 3 a;a;aiai(aj|ai) =Y, af aja?, since |a;), is an orthonormal base.

With a] a;, the probability P to find the observable in state i, we obtain the expression we are looking for:
(¥|A%|¥) = ¥, a? P(a;), and consequently,

(84)? = ((A)?).

For the operator B with eigenvalues b; and eigenvectors |b;), we derive similarly

(AB)? = ((B)?).

2) Show that [4, B] = [4, B]. (L5.6)
A =A—(A), and B = B — (B). Substitute both expressions in Eq. (L5.6). After some algebra we obtain,
using (4) and (B) to be real numbers:

[4,B] = AB — BA = [A, B].

3) Using (AA)? = ((4)?), (AB)? = ((B)?), and [A, B] = [A, B], show that:

AAAB > S |(¥|[A, B]|¥)| .

With Eq. 5.12:

2./{A2)(B2) > |{¥|[A, B]|W)|, replacing A and B with A and B respectively, 4 and B both Hermitian
operators, we obtain:

2J{(A)*N(B)?) = (¥I[A, B]|¥)|. (L.5.7)
Now with the results of:

1) (A4)* = ((A)?), and (AB)* = ((B)?),

and

2)[A,B] = [AB],

substituted in Eq. (L5.7) » AAAB > §|(W|[A, B]|¥)] .
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Lecture 6. Combining Systems: Entanglement.

6.1 Mathematical Interlude: Tensor Products

6.1.1 Meet Alice and Bob

This lecture is about composite systems: A and B.

There are two spaces of states: S, and Sg.

Susskind demonstrates a composite system by a quantum mechanical coin, 4, and a
quantum die, B.

6.1.2 Representing the Combined System

The combined system is constructed by a tensor product.

The symbol for this tensor product is: Q.

In Figure 6.1, Susskind presented the state labels for the combined system: S,5. On the
pages 153 and 154, Susskind explained the notation for the combined system S,5.

At the end of this section, Susskind refers to an ongoing discussion, initiated by Einstein,
about the differences between classical physics and quantum physics (Smolin,1).

6.2 Classical Correlation
With two coins Susskind explained the classical correlation. At the top of page 158 the
statistical correlation is presented.

Exercise 6.1 Condition for zero correlation

Prove that if P(a, b) factorizes, then the correlation between a and b is zero.

When P(a, b) factorizes, a and b are independent. So, Eq.(6.3):

P(a,b) = P4(a)Ps (D).

The values of A’s observations are g, and the B’s observations are op.

Then,

(0408) = X a;ibiP(a;, b)) = Xij aiPa(a)bjPs (b)) = X a;Pa(a;) [X; b;Ps(b;)] =

=Y a;Py(a;) (ap) = (05) X; a;Ps(a;) = (a5){(ay)-

So,

(au)og) = (0405) = (04){(0g) , the expectation value of the product is the product of the expectation
values.

Hence,

(0408) — (04){0p) = 0,

the correlation is zero.

Note, | did use Susskind’s notation. However, an observation leads to the measurement of a;, or b]-. So,
instead of using {g,) and/or (gp), | should have used {a) = }; a;P, (a;),

<b> = Z] b]PB (b]) and (ab) = Zi,j aibjP(al- B b])

To conclude this section, Susskind discussed the meaning of probability in classical physics.

6.3 Combining Quantum Systems

Now, Susskind repeated the experiment with A and B using spins instead of coins.

For a combined system, |ab) is used to represent the ket of this system.

Here, matrix elements are again introduced. Matrix elements are important parts of the
guantum mechanical machinery. This explained on page 161.
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6.4 Two spins

The notations for the two-spin system is presented.
The space of states is a tensor product.

The basis states are presented, top page 163.

6.5 Product States.

The product state is the simplest type of state for the composite system.
Susskind based the product state on the two states |A) and |B).

| do not use the Susskind notation: |4} = a,|u} + a4|d}.

| use the bra and ket notation of Dirac.

Reminder normalization:

(Al4) = (ulay, + (d|ag) (ay|u) + aqld)) =1,

with

a,aguld) =0, aja,{d|lu)y =0.

The state of B is:

Bulu) + Bald).
The product state is presented at the top of page 164, Eq. (6.5).

Exercise 6.2: About normalization of a product state

Show that if the two normalization conditions of Eqgs. 6.4 are satisfied, then the state-vector of Eq. 6.5 is
automatically normalized as well. In other words, show that for this |product state), normalizing the
overall state-vector does not put any additional constraints on the a’s and f’s.

A’s state:

aylu) + agld),

and the state of B:

Bulu) + Bald).
The normalization condition for both states gives, the usual procedure with inner products:

aya, +aza; =1,and BB, + Bifa = 1, Egs.(6.4).
The combined system:

lproduct state) = [ ay|u) + aq|d)] Q[ Bulu) + Bald)].
With the composite notation, the product state-vector |¥) becomes, Eq.(6.5):

V) = aufulun) + ayfalud) + agfyldu) + agfaldd).

For this product state-vector to be normalized, the condition is: (¥|¥) = 1.
The bra (¥| results from the complex conjugate of Eq.(6.5):

(P|= (uulaypy + (udla;Bg + (dulagfy + (dd|agfg- (L6.1)

Now we take the inner product of (¥| and |¥), thereby using {ab|a’'b’) = 8,,,6,p, defined at page 161.
The Kronecker delta is zero unlessa = a’and b = b'.

For example: (uu|dd) = 0.
So, with |¥), given in Eq.(6.5) and (¥|, givenin (L6.1):

(PI¥) = (agay + agag)(BuPy + BaBa) = 1.
The normalization creates no additional constraints on the a’s and f8’s.

6.6 Counting Parameters for the Product State
In this Lecture, Susskind demonstrates an important technique: counting parameters to
illustrate consistency. Do compare this with dimension analysis.
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6.7 Entangled States.

As mentioned in Lecture 6.5: “... most of the state vectors in the product space are not
product states.”

At the top of page 166: “... we only have one normalization condition.”

Entanglement is introduced.

Exercise 6.3: The maximal entangled state-singlet

Prove that the state |sing) cannot be written as a product state.
. 1

|sing) = = (lud) — |du)).

Eq. (6.5), page 164, the product state:

|¥) = ayfulun) + ayfalud) + agfyldu) + agfaldd),
represents the product state. Compare Eq. (6.5) with the expression for |sing):
. 1
|sing) = = (lud) — |du)).
Then,
auﬁul””) =0,
= a,, and/or B, are/is zero.
Consequently,
aBalud) =0,0r azfy,ldu)=0.
Also,
agfqldd) =0,
= a, and/or B, are/is zero.
Consequently,
aBqlud) =0,0r azfy,ldu)=0.
Hence, the state |sing) cannot be written as a product state.

Remark: Susskind writes on page 160: ” We will make frequently use of the notation |ab) to
label a single basis vector of the combined system”. On page 162 he writes: “Let’s work in a
basis in which the z components of both spins are specified. The basis vectors are:

|uu), lud), |du), |dd),....”. On page 164 and page 165 he writes: “I’ll mention here that tensor
products and product states are two different things, despite their similar-sounding names.
(Footnote: Sometimes, we’ll use the term tensor product space, or just product space, instead
of tensor product). A tensor product is a vector space for studying composite systems. A
product state is a state-vector. It’s one of the many state-vectors that inhabit a product
space. As we will see, most of the state-vectors in the product space are not product states”.
On page 169 Susskind writes: “Now let’s consider how the operators should be defined when
acting on the tensor product states |uu), |ud), |du, and |dd)”. Here Susskind uses the
expression: tensor product states. These are the single basis vectors for the combined
system. The word “product” belongs to tensor.

Page 167: Susskind spent a few words on the mystery of entanglement.

6.8 Alice and Bob’s Observables.

In this Lecture, Susskind presents the results of the spin operators acting on the system: a
composite space of states. See Egs. (6.6) and (6.7).

In this Lecture the observables of spin measurements are presented. Furthermore, the
convention how to operate on the product states. Attention is paid to the tensor product
space. Compare Egs. (6.9) and (6.10).
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At the bottom of page 170, Susskind makes the remark: “If we were being pedantic, we
would insist on writing the tensor product version of 6, and t, as g, @ [ and I @ T,.......”.
Pedantic? It depends. The alternative is to remember, Eq.(6.9),

ozldu) = —|du),

g, operates on d, and the result is —|du).

To show the elegance of Tensor Calculus, see the example below.

Example of the elegance of Tensor Calculus

Using the tensor product for I Q t,,:

01 00
10 0 1y_[1 0 0 0
(0 1)®(1 0)_ 0 0 0 1/
0 010
ande.g.,
0
ud) =@l = ()@ ()=
0
we have
0 1 0 0\ /0 1
G =3 5 5 N 1]=a]=()® () =1 ® = uw.
0 0 1 0/\o 0

See Eq.(6.8).
This seems to be a lot of work. On the other hand, studying, e.g., Quantum Mechanics, Special Relativity
end Classical Field Theory(Susskind Volume 1ll) , applying tensor calculus is not a real burden.
Next the product of operators
Oy Ty,
operating on |uu).

0 0 0 1
0 1 0 IN_(0 0 1 O
UXT’C_’(1 0)®(1 o)_ 0100
1 0 0 O
1
o1y [0
I””)_’(o)®(o)_ 0
0
Now
0 0 0 1 1 0
0 0
Ox Ty [uu) = 8 (1] (1] 8 0 = 0 = |dd).
1 0 0 O 0 1

From this result we conclude o, operates on the left part of |uu), and 7,, on the right part of |uuw).
Note; in Lecture 7.1.2 Susskind showed the elegance of tensor products with additional examples.
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Exercise 6.4: operate the spin matrix operators on the up and down column vectors.

1)Use the matrix forms of gy, g, and g, and the column vectors for |u) and |d) to verify Egs. (6.6). Note: |
don’t use Susskind’s notation |}.

2)Then, use Egs. (6.6) and (6.7) to write the equations that were left out of Egs. (6.8). Use the appendix to
check your answers.

ad 1) Let us take for example gy, and |u):

Jylu) = i|d). We write this expression in matrix and column vector representation:

¢ 0 =1GQ)
The left-hand side becomes (?) and this equals the right-hand side.

ad 2) Let us for example write out the equation g, |ud).
The convention, with Eq. 6.6:

azlu) = u),
we have
o,|ud) = |ud).

Exercise 6.5: spin operators and the product state.
1) Prove the following theorem:
When one of A’s () or B’s (T) spin operators acts on a product state, the result is still a product state(not
entangled). See also Exercise 6.2.
2) Show that in a product state(not entangled), the expectation value of any component of & or T is exactly
the same as it would be in the individual single-spin states.
ad 1) So let’s take o, and the product state given in Eq.(6.5):
lelp) = Gx(auﬁuluu) + auﬁdlud) + adﬁuldu) + adﬁdlddD' (L6.2)
we know now how g, operates on the basis vectors. So Eq. (L6.2) becomes:
ox|¥) = ayfuldu) + @y faldd) + agfyluu) + ayfalud),
this can be written as:
(ayld) + azlu)) & (B,lu) + Byld)), representing a product state, the Theorem.
ad 2) The expectation value of any component of & and 7 is the same as in the single-spin state.
Remember: we work in a basis in which the z components of both spins are specified.
For the product state |¥), the expectation value:
(0y) = (P]o,|¥).
With (L6.2) and Eq. 6.5, the expectation value, using (abla’b’) = 6,4,0pp
() = (ahaq + azen) (Bubu + Biba):
Use BBy + BiBa = 1, the normalisation condition for a product state Eq.(6.4), we obtain:
() = (ahaq + a5,
The state vectors |ab), are taken orthonormal. This is expressed by the Kronecker delta symbol (ab|a’b’) =
5aa16bbl-
For example (ud|uu) = 8,46, = 0 and (ud|ud) = 6,644 = 1.
The single-spin state:
|4) = a,|u) + ay4|d) gives for the expectation value (o,) = (4|0, |A) :
(oy) = aay + aja,. The same as for the product state.
Similarly, we find for (ay) :
(ay) = ('I’|ay|'1’) = i(aja, — a,,ay), the same as for the single-spin state.
Finally:
(0,) = (V|0 |¥) = —a;aq + aja,, the same as for the single-spin state.
For the single-spin state we proved in Lecture 3: Eq. (3.27). There Susskind writes: “Moreover, this is true for
any state”. We have proven in this Exercise, Eq (3.27) to be true for the two-spin product state.

For completeness, Egs. (3.27) and (6.11):

2 *
() +(0,)" +(0,)* = (e, + afag)? = 1.
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Now we must prove this for 7. It will be of no surprise that we find the same results for the
same product state |¥) and the single-spin state |B) = B, |u) + 4|d).

Furthermore, the normalisation condition we use in this case reads: a;,a, + aja; = 1 and
again the Kronecker delta for the two-spin state.

Another example: (dd|ud) = 6,;46,4 = 0, and {(du|du) = 6446, = 1.

Susskind presented on pages 173 and 174 the expectation values for g, and the entangled
state [sing).

6.9 Composite Observables

Remark: On page 176 Susskind writes: “But for Alice and Bob, it is easy to see that every
component of o (= 6) commutes with every component of T(= T )“. Every component? Well,
see Exercise (6.6) below: [ax,‘ry] = 2io, . However, should we read this sentence on
commutation as, e.g., [0y, T, ] = [0,,T,] = [oy,ry] = 0 ? | think so.

In this Lecture Susskind deals with the composite operators and the related observables. As
an example, the state |sing) is used.

Exercise 6.6 The expectation value of spin operators for a singlet state
1)Assume Charlie has prepared the two spins in the singlet state. This time, Bob measures 7, and Alice
measures g,. What is the expectation value of 0,7,,?
2) What does this say about the correlation between the two measurements?
ad 1) 0,7, |sing) = 0,1, \%(lud) — |du)),
where g, operates on the left-hand side of the basis vector and 7,, operates on the right-hand side of the
basis vector. So,
0,7y Ising) = 0, 7= (=iluw) — ildd)) = == (|du) + |ud)).
The last term between brackets is not a singlet and |sing) is not an eigenvector of 0,T,,.
The expectation value of g, 7,:
(oy1y) = (sing|0x‘ry|sing) = —\/%(singl(ldu) + |ud)) =
— ((ud|—~(dul)(Jdu) + |ud)) = = (ud|ud) + (ud|du) — (dulud) — (duldu)) = (1 +0~-0~1) = 0.
Use has been made of the Kronecker delta for the combined state.
The expectation value is zero.
ad 2) The correlation (ax‘ry) - (crx)<‘[y) is found form the above result for <O’x‘[y> and the expectation values
(o,) and <Ty> as calculated by Susskind on page 173 and 174.
Then,
(axry) — (ax)(ry) = 0— 0 = 0 — no correlation.
Do gy and 7,, commute: [ax, ‘L'y] = 0 zero?
With the Pauli matrices we obtain:
[0, Tyl = 04T, — Ty0, = ((1) (1)) ((l) Ol) - ((l) Ol) ((1) (1)) =2 ((1) _01) = 2io, # 0.
These components of o(= &) and 7(= 7 ) do not commute . Nothing new: see page 118 and Eq. (4.26). This
defines the expression “every component” of page 176 and explains the question mark in the above remark.
However, | think the remark of Susskind means: [o,, T,] = [0,,T,] = [ay, ‘L'y] =0.

A reminder for the subsequent exercises:
(uuluu) = 1,
(udlud) =1,

45



(du|ldu) =1,
(dd|dd) = 1.

Exercise 6.7: The expectation value of spin operators for a triplet state
Next, Charlie prepares the spins in a different state, called |T;), where
IT2) = & (lud) + |du)).
In these examples, T stands for triplet. These triplet states are completely different from the states in the
coin and die examples.
What are the expectation values for 0,7,, 0,7y, and 0, T, ?
(0,7,) = (T1|0,7,|T;). With Egs. 6.8:
(0,7,) = =5 (ud|+(dul) (Jud) + |du)),
where use has been made of Table 1 of the Appendix.
Applying the Kronecker delta for the combined state: {(o,7,) = —1.
This can be obtained in a slightly different way.
0,7,|Ty) = — \/ii (Jud) + |du)) = —|T;). We see |T;) to be an eigenvector of the operator 0,7, with
eigenvalue —1. The expectation value can then be obtained in the following way: {(0,7,) = (T} |0,7,|T;) =
—(T4|Ty) = 1.
Similarly we have for {0, 7,,) = 1, where 0,7, |T;) = |T;). We see |T;) to be an eigenvector of the operator
04Ty, With eigenvalue +1 .
And 0,7, |T;) = |T}).
The triplet |T;) is an eigenvector of the operator o, 7, with eigenvalue +1.
The expectation value (0, 7,) = 1.
(Tl0lTy) = 3 (Qud | +{dul) o (Jud) + |dw) = 3 (ud|+dul)(jud) — |du)) =
=14+04+0-1=0,
where use has been made of the Kronecker delta for combined states.
Similarly
(ay) =0, and (g,) = 0.
Then, e.g.,
(oy7y) = {oy)(7y) = 1
Consequently, we have perfect correlation when maximally correlated.
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Exercise 6.8 The expectation value of spin operators for the other two triplet states
Do the same as in Exercise 6.7 for the other two entangled triplet states,
|T,) = %(|uu) + |dd)) and |T3) = %(|uu) — |dd)), and interpret.
IT>) :
(0,T,), with Eq.(6.8) or Appendix Table 1:
0,7,|T2) = 2 (luw) + |dd)) = |Ty).
So,

|T,), is an eigenvector of the operator g,7, with eigenvalue +1.
Consequently,

(0,7,) = (Tz|0,7,|T,) = (T,|T,) = 1.
(0, T,), with Eq.(6.8):

0, T[Tz} = = (|dd) + [uu)) = |T,).
So,

|T,), is an eigenvector of the operator o, 7, with eigenvalue +1.
The expectation value (0,7, ) = (T,|T,) = 1.
(0y7y): 0yTyITy) = =5 (Idd) + uw)) = —|T,).
|T,), is an eigenvector of the operator 0,7, with eigenvalue —1.
The expectation value (g, 7,) = —(T,|T;) = —1.

Furthermore (o,) =0:

(02) = (Toloy|Ty) = 3 ((uu] + (dd]) (Jdu) + [ud)) =50 +0+0+0) = 0.
Similarly
(ay) =0, and (ag,) = 0.
Then, e.g.,

(0xTx) = (o 1) = 1
Consequently, we have perfect correlation when maximally correlated.

|T3):
(0,7,):
0,7,|Ts) = 5 (luw) — |dd)) = |Ts).

We find |T3), to be an eigenvector of the operator o,7, with eigenvalue +1. The expectation value (0,7,) =
(T3|T3> =1L

() 0Tl T3) = 5 (Idd) = |uw)) = —|Ts);

|T5), is an eigenvector of the operator o, T, with eigenvalue —1.

The expectation value (g, 7,) = —(T5|T3) = —1.

{oy7y): 0y7y|T3) = %(W”) —|dd)) = |T3).

|T5), is an eigenvector of the operator g, T, with eigenvalue +1.

The expectation value (ay‘ry) =(T5|T5) = 1.

Furthermore (g,) =0:

(o) = (T303|T3) = 5 (| — (dd])(Jdw) — [ud)) = 5(0 =0+ 0 +0) = 0.
Similarly

(o,) = 0,and (g,) = 0.

Then, e.g.,

<UyTy> - <ay>(fy> =1

Consequently, we have perfect correlation when maximally correlated.

Susskind paid attention to the measurement of the observable g - 7. The operator is used in
the next exercise. On this page Susskind paid attention to commutation: “The problem is
that Bob cannot simultaneously measure the individual components of T, because they do
not commute”. See the remark on page 176.
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Exercise 6.9 The eigenvectors of the product operator and the entangled vectors
Prove that the four vectors |sing), |T;), |T>) , and |T3) are eigenvectors of & - 7. What are their eigenvalues?
Most of the work has been done in Exercises 6.6, 6.7 and 6.8.
We must complete the calculus for |sing). On page 177 and page 178 Susskind calculated a,7,|sing) =
— % (lud) — [du)) = —|sing),
and [sing) , is an eigenvector of the operator 0,7, with eigenvalue —1.
0,Txlsing) = = (Idu) — [ud)) = —|sing).
So, |sing), is an eigenvector of the operator g, T, wit eigenvalue —1.
The expectation value (g,7,) = —(sing|sing) = —1, and the expectation value (o, t,) = —(sing|sing) = —1.
For 0,7, |sing) = %(|du) — lud)) = —|sing),
and (o,7,) = —(sing|sing) = —1.
|sing), is an eigenvector of the operator 0,7, with eigenvalue —1.
1) Is |sing), an eigenvector of the operator 6 - 7 ?
We know & - T = 0, T, +0, 1), + 0,7, , (page 180).
When we operate & * T on |sing), we have
(0xTx +0yTy + 0,7,)|sing) = —3|sing).
So,
|sing), is an eigenvector of 6.7 with eigenvalue —3.
2) With the results of Exercises 6.7 and 6.8, it follows straightforward |T;), |T,), and |T;) to be eigenvectors of
6 - 7, with eigenvalues the same and equalto +1(= 1+ 1 — 1).
Note: the eigenvalues of the components of & * 7 vary with the triplets. See Exercise 6.8.

4

Remark: On page 181 Susskind writes: “......., the singlet is an eigenvector, and the triplets
are all eigenvectors with a different degenerate eigenvalue”. ‘Different degenerate
eigenvalue’, what kind of animal is that? On page 64 Susskind writes: “....... This situation,
where two different eigenvectors have the same eigenvalue, has a name: it’s called
degeneracy”. On page 67 Susskind writes: “.... This typically happens when a system has
degenerate states-distinct states that have the same eigenvalue”. So, the expression

‘different degenerate eigenvalue’ is not clear to me. May be a typo?
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Exercise 6.10 The energies and eigenvectors of two spins for a given Hamiltonian.

-

A system of two spins has the Hamiltonian H = %5 T .
(Note : Hamiltonian without Planck’s constant).

What are the possible energies of the system, and what are the eigenvectors of the Hamiltonian?

Suppose the system starts in the state |uu). What is the state at any later time? Answer the same question
for initial states of |ud), |du), and |dd).

| follow the steps of the recipe for a Schrodinger ket, page 124, (See also Exercise 4.6):

-

1) Derive,...., the Hamiltonian operator H - H = %5 - T.
2) Prepare an initial state |¥(0)) : |uu).
3) Find the eigenvalues and eigenvectors of H Schrodinger equation, H|EJ) = EJ|EJ>
| can choose as eigenvectors the singlet and triplets. They form a complete set of orthonormal vectors in the
four-dimensional vector space. The eigenvalues E; are — 3;)—h for |sing) and %h for the triplets.
I include here Planck’s constant # since | consider the absence of & in the Hamiltonian of this Exercise a
printing error.
Could we also have taken the vectors |uu), |ud),|du),and |dd), as a basis? Do they also form a complete
set of orthonormal vectors? They comprise the basis set for the four-dimensional vector space. In the note
below | will pay attention to this question. | stay with the singlet and triplets being the eigenvectors of 7 - 7.
4) Use the initial state-vector |¥(0)), along with the eigenvectors |Ej) from step 3), to calculate the initial
coefficient a;(0) = (Ej|l1'(0)) = (Ej|uu).
a;(0) = (E;|uu) = (singluu) = 0,
a;(0) = (E;Juu) = (Ty|uu) = 0,
a3(0) = (E3[uu) = (T,Juu) = 7, and
@,(0) = (Eyluu) = (T3Ju) = .
To find these coefficient use has been made of the expressions for the singlet and triplets given in the above
exercises and the Kronecker delta.
5) Rewrite |¥(0)) in terms of the four eigenvectors |Ej), and the initial coefficients @;(0) : [¥(0)) =
Zj aj(o)lEj>;
6) In the above equation, replace a;(0) with a;(t) to capture its time-dependence. As a result |¥'(t)):
1P (0)) = X; a;(DIE;) .
7) Using Eq. (4.30), replace a;(t) with aj(O)e'iEft/h :

iE;t
W(0) = 5 a;(0)e ™ |E).

3wh wh

8) With the above results for a;(0) and eigenvalues E; , — - and P

1wt _lwt
P () = ze 2 (IT2) +1T3) = ez (luw)).
In this expression the eigenvalue — 3(:—71 did not contribute. This eigenvalue will contribute for the initial
states |ud) and |du).
Now, the same exercise with |ud) as initial state. The singlet and triplets are again used as eigenvectors and
start with step 4) of the recipe.
4) Use the initial state-vector |¥(0)), along with the eigenvectors |E]-) from step 3), to calculate the initial
coefficient ;(0) = (E]-|‘I’(0)) = (Ej|ud).
, 1
,(0) = (E1|ud) = (sing|ud) = 7,
1
a;(0) = (E;lud) = (T;ud) = 7,
a3(0) = (Es|lud) = (T,|ud) = 0, and
a,(0) = (E4lud) = (Ts|ud) = 0.
To find these coefficient use has been made of the expressions for the singlet and triplets given in the above
exercises and the Kronecker delta.
5) Rewrite |¥(0)) in terms of the four eigenvectors |Ej), and the initial coefficients a;(0) : [¥(0)) =
Zj 0(]'(0)|Ej),
6) In the above equation, replace a;(0) with a;(t) to capture its time-dependence. As a
result [P (¢)): [P (1)) = %, aj(t)lEj>. ‘
7) Using Eq. (4.30), replace a;(t) with a]-(O)e_‘Eft/fl :
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[P (t)) =Xja;(0)e = |Ej>-
8) With the above results for a;(0) and eigenvalues E; , — :ih and %h :

P(0) = Sl = Ising) + e % 1)) = 26" (rud) — |du)) + ¢ ™% (ud) + 1dw)|

() = 2o (2 + Dlud) + (1 — e2“5)]du)).

If we calculate the probability to find the result for the singlet, we find : %, independent of time.
Now at time t we have a mixed state.

For the initial state |du) we again find a mixed state at time ¢t:

() = 2e 5 (P + Dldu) + (1 — €295 ud)).

For the initial state |dd) we find

1

() = e ™5 (1) 1) = 7% (ldd)).

Note:

0 - Tluu) = |uu),

o - tldd) = |dd),

0 - Tlud) = —|ud) + 2|du),
and

0 - T|du) = —|du) + 2|ud).
|uu), |dd), |lud), and |du) do not constitute a complete set of eigenvectors since |ud) and
|du) are no eigenvectors of 6 * T .
¢ - T(|ud) + |du)) = |ud) + |du) = V2|T;),
and |ud) + |du) is an eigenvector of 7 - 7.
Likewise, |ud) — |du) is an eigenvector of 5. 7.
Then,
|luw), |dd), (Jud) + |du)) and (Jud) — |du)) constitute a complete set of eigenvectors of
the observable g - 7 .
The observable ¢ - T is written “as the ordinary dot product of the vector operators ¢ and T:

0T = 0,Ty +0, T, + 0,7,(page 180)”. You could be tempted to multiply the Pauli matrices.
However, then a 2 X 2 matrix is found: (?) g) With the combined states we have a 4 X 4

vector space and by applying this 2 X 2 matrix you are lost. Lost in temptation, sort of.
0001
0010
0100
1000
in Lecture 7 and illustrated in the section of the elegance of tensor products in my notes

above page 40).

OxTy = 0, X T, = , (use has been made of the tensor product & as explained

OyTy =0, Q Ty = and

- o O O
o R O O
oo R O
R =R=N
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1 0 00

0—-100

972 =@ = o g_q g

0 0 01

Consequently ¢ - 7T:

1 0 00
0T = 0,Ty +0,T, + 0,T,= 0-120
- Yx'x yty zv'z— O 2_10
0 0 01

Lecture 7. More on entanglement.

This lecture elaborates further on entanglement by using tensor product matrices. A new
operator, the outer product is introduced along with the density matrix.

7.1 Mathematical Interlude: Tensor Products in Component Form
7.1.1 Building Tensor Product Matrices from Basic Principles
Lecture 3.1.1 Rehearsal.
Egs. (3.1)-(3.4):
2i{kIM|j) a; = X; Bilklj),
myp My My3
M = (m21 ma2 m23>,
m31 Mp3 M3z
Yi{kIM|j)a; = X myjaj = B = my; = (k|M|j),
where m; ; are called the matrix elements,
and

M1 Mz Myz\ /g B1
<m21 myz mzz) <a2> = (ﬁz)
mgzy; My3 Mg/ \Q3 B
Susskind illustrated the tensor product matrix with the example o, @ I.
In Eq. (7.2), the components of the two-spin vector are u and d. Then, with the 4,
combined, basis vectors (see page 185) a 4 X 4 matrix is constructed. Use has been made of

(abla'b") = 6,44,6pp, , to obtain the matrix Eq.(7.4).
Page 187, with Egs. (7.4) and (7.5):

10 0 0\ /0 0 0
1 0 0 0

0 Q I|du) = 8 0 —01 (()) Y s
00 0 -1/\o 0 0

7.1.2 Building Tensor Product Matrices from Component Matrices

In Egs. (7.6) and (7.7), Susskind presented the recipe for tensor products.

On the pages 189-191, Susskind presented various examples of tensor products.

To summarize: “....it is about matrix representation of abstract operators and state-vectors
that replicates their known behavior.”
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Exercise 7.1: Operate Bob’s tensor on the basis vectors

Write the tensor product I ® 7, as a matrix and apply that matrix to each of the |uu), |ud), |du), and |dd)
column vectors. Show that Alice’s half of the state vector is unchanged in each case. Recall that I is the 2 X 2
unit matrix.

0100
/10 0 1\ _[1000
’®Tx_(o 1)®(1 o)_ 0001 |’
0010
1
1 1y _[o
) = (5) ® (o) =|
0
0100 1 0
Now I @ T, |uu) = (1)88(1) g = (1) = |ud), page 189 Egs.(7.9).
0010 0 0
0100 0 1
1 1
Then I @ t,|ud) = Ogg(l) ol= 8 = |uu).
0010 0 0

Along the same lines we find I ® 7,|du) = |dd) and I ® t,|dd) = |du). This shows that Alice’s half of the
state vector is unchanged in each case.
Do not be confused by this statement:

0100
(1 0 0 1y _|([1000 . . .
I®0x—(0 1)®(1 0)— 0001 , giving the same results as obtained with I @ t,..
0010

Exercise 7.2 Matrix element of the tensor product of both spin operators
Calculate the matrix elements of g, @ 7, by forming inner products as we did in Eq. 7.2.

(uulo,tluu) (uulo,t,lud) (uulo,t,ldu) (uulo,t,|dd)

(ud|o, 7, luu) (ud|o,t|ud) (ud|o,z,|du) (ud|o,z,|dd)

(dulo, Ty luu) (dulo,t,|ud) (dulo,t.|du) (dulo,T,|dd) |

(ddlo,Txluu) (dd|o,Tx|ud) (dd|o,Tx|du) (dd|o,T.|dd)
Up to learning about the tensor product, we assume g, to operate on the leftmost (that is Alice’s) state-label
(Susskind) and 7, on the rightmost (that is Bob’s) state-label. That assumption is still correct. However, now
we know how to construct the matrix 0,7, and the combined states |uu), etc, Egs.(7.2) and (7.5), resulting
from the tensor product. Furthermore, using the fact that these states are orthonormal or, and that is the
same, make use of the Kronecker delta for combined states, (ab|a’b’) = 644,61, the above matrix
becomes:

01 0 0

10 0 0)_

00 0-1]" %%
00-1 0

52




Exercise 7.3 More on tensor products
a) Rewrite Eq. (7.10), (A Q B)(a @ b) = (Aa ® Bb), in component form, replacing the symbols 4, B, a,
and b with the matrices and column vectors of Egs. (7.7) and (7.8).
A bit tedious indeed!
Ay Ag Bi1 By an by
We have A = (A21 Azz)' B = <321 Bzz>,a = (a21) and b = (b21)'
A @ B equals Eq. (7.7) and a @ b equals Eq. (7.8).
Ay11B1y AyBip ApBiy ApBiy
A11By1 A11Byy  A1aByy A1B;

ABB =\ 4,8, ApBi, ApBy AyBy |
Az1By1 A21Boy AzBay AzaBa
and
ay1byq
a11b;1
a®b az1b1q
az1b1

The left-hand side of Eq. (7.10) is a matrix multiplied into a column vector producing a new column vector or
a 4 x 1 matrix.
b) Perform the matrix multiplications Aa and Bb on the right-hand side of Eq. (7.10) .
. . _ (A1 A\ (1N _ (A11a41 + Agp05,
Aaisa2 X 1 matrix: Aa = <A21 A22> (a21) = <A21a11 " A22a21)'
Bll BIZ) <b11> — <Bllb11 + Ble21)
BZl BZZ b21 BZlbll + BZZbZI '
Tensor multiplications of these 2 X 1 matrices produces a 4 X 1 matrix.
[A11a11 + A12a51] - [B11byy + B12b21]\
[A11a11 + A12a51] - [Bo1b1q + Byobyy]
[A21a11 + Azz051] * [Bi1b11 + Biobyy]
[A21a11 + Az2051]  [Ba1b11 + Byybay]

Bbisa 2 X 1 matrix: Bb = <

Aa @ Bb =

c) Expand all three Kronecker products, Egs.(7.6) and (7.7), the matrix version of the tensor products in
Eq.(7.10).

We have all the ingredients for expanding

(A® B)(a ® b) = (Aa Q Bb)

On the left-hand side we find a 4 X 1 matrix as we do on the right-hand side:

Ay1B11a11b11 + A11B12011by1 + A13B11A51b11 + A13B12051 by

Ay1B31011b11 + A11B23a11b21 + A12B21051 D11 + A12B22021 b4

Az1B11011b11 + A31B12a11b21 + AgaB11G31 b1y + A Bi2a31 by |
Az1Bz1a11b11 + A1 Byyai1by1 + AzpBoqay1byy + AjpByragg by

A®B)(a®b) =

and

Ay1B11a41byy + A11B13a11b51 + A13B11a31b11 + A13B15051 b5
Ay1By1a41b11 + A11B33041b21 + A13B31051b11 + A13B5,051 D54
Az1Byyaq1b1q + A1 B13041b2q + Az Bi1G31b11 + Az Bia051b54
Az1B31011b11 + A31B52011b51 + Az 851021011 + Az B22051 b5y

Aa @ Bb =

d)Verify the row and column sizes of each Kronecker delta product of Eq. (7.10):
e A ® B:atensor product of two 2 X 2 matrices produces a 4 X 4 matrix represented by Eq. (7.7).
e a @ b:atensor product of two 2 X 1 matrices gives a 4 X 1 matrix represented by Eq. (7.8).
e Aa @ Bb: atensor product of two 2 X 1 matrices as explained above in b). This product results in a
4 X 1 matrix.
Remark: “Aa @ Bb: 4 x 4”. A printing error, see e) and f).
e) Perform the matrix multiplication on the left-hand side in Eq. (7.10), resulting in a 4 X 1 column vector.
Each row should be the sum of four separate terms. This is shown under c).
f) Finally, verify that the resulting column vector on the left hand and right sides are identical. This is shown
under c).
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Example tensor product Interlude:

Now, before to continue with Lecture 7, let us return to Exercise 6.10 and apply the above
toolkit of tensor algebra to find the eigenvalues of the operator ¢ 7 = 0, T, +0,Ty + 0,T,.
Then we must realize that we construct the tensor representation of the right-hand side of
the expression for ¢ - 7. Using the 2 X 2 Pauli matrices we have:

1 0 00
0—-1 20
0 2-10/
0 0 01

a 4 X 4 matrix of which the eigenvalues 4; are found from the determinant leading to the
polynomial: (1 —2)2((1 + 2)? — 4) = 0, with three roots:

A; = 1(degeneracy) and one root A; = —3.

In accordance with the eigenvalues of the singlet and triplets. The difference between the
eigenvalues of the singlet and triplets and of the other orthonormal basis |uw), lud), |du),
and|dd), is:

the latter basis being the orthonormal basis for the four-dimensional space, does not form a
complete set of eigenvectors of the operator ¢ - T as mentioned before. In the Exercise 6.10
we presumed the singlet and the triplet to be the eigenvectors of ¢ - 7 and it worked. Now,
given the above matrix and its eigenvalues, can we find the eigenvectors in a general way?
Let’s start with the eigenvalue —3 and assume the components of the column vector
representation of the eigenvector to be a, b, c and d. Then:

1 0 00\ sa a
0—-1 20 b__3b
0 2—10]f\c/] cl
0 0 01/ \d d

applying matrix vector multiplication and equating:

a=-3a,»a=0,d=-3d,»d=0,and b = —c.

With normalization, bb* +cc*=1,b = i, and ¢ = — —.
V2 V2

Now, the eigenvector is

0
1 1
V2| —1
0

Look on page 189, Eq. (7.9) and we find that this eigenvector is represented by
= (jud) — |du)) = |sing).
What about the three eigenvectors with eigenvalue +17?

1 0 00\ sa a

0—-1 20\(b)_ [P

0 2—-10\c|] \c/

0 0 01/ \Md d

applying matrix vector multiplication and equating:a = a,d = d,and b = c.
a

. b I e
The eigenvectors are b and the normalization condition is:

d
a*a+ 2b*b +d*d = 1.
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Furthermore, we have the column vector representations of the basis vectors given on pages
189 and 190, Eq.(7.9).

Starting with a simple eigenvector where a = 0 and d = 0, and b is real, we find for the first
eigenvector with eigenvalue +1 the triplet:

IT2) = % (lud) + |du)).
The other two are found by b = 0 anda = d, and b = 0 and a = —d. This produces the
eigenvectors |T,) and |T3).

By the way, seta = 1,and b = ¢ = d = 0 and you have |uu) . Furthermore, setd = 1, and
a = b =d = 0 giving |dd). In Fitzpatrick (Undergraduate course) |[uu) and |dd) with |T;)
are the three triplets. This is no contradiction, since adding and subtracting |uu) and |dd)
respectively, with normalization, give us |T,) and|T3).

In Noordzij, some additional thoughts are presented on the construction of the triplets.

End of tensor product example.

7.2 Mathematical Interlude: Outer Product
In this Lecture Susskind introduced the outer product |Y){¢! as a new linear operator.
On page 34 we encountered something like an outer product: |i)(i].

Dirac(page 25) proved the outer product to be a linear operator.

At the top of page 194: “...we take the inner product of (¢| with |A) (the result is a complex
number) and multiply it by the ket |1).” — And a new ket is obtained. So, the outer product
is an operator.

On page 194 Susskind gives some properties of projection operators-a special form of outer
product- that “can easily be proved”( Susskind uses |y), | prefer |¥)):

Projection operators are Hermitian.

Remark: Dirac proved on page 28 the complex conjugate of the outer product to be equal to
the outer product. Dirac: “Multiplying |A){B| into a general bra (P| we get (P|A){B|, whose
conjugate imaginary ket is ((P|AXB|)" = (P|A)*|B) = |B)A|P), and

((PIAXBI)" = |P)(IAXBI)" = |B)A|P). This gives for any |P) : (|A)XB|)" = |BXA]| .

Well, to be Hermitian, the projection operator must be a matrix. With a column vector
representation of the ket in the projection operator we find a matrix. Then, with the proof of
Dirac equating A = B = i and the matrix representation of the outer product it

appears:([Y)XY DT = [YXYI.

Properties of projection operators:

e Projection operators are Hermitian (See Dirac, page 28).
Remark: On page 28, Eq. (7) Dirac proved the conjugate imaginary of [A)(B],
|AXB| , to be equal to |B){(A|. See my Remark above: (Jy)y|T = [}

e Any vector I¢p) orthogonal to Iip) is an eigenvector of [){(y| with eigenvalue zero:

[N 1P) = 1) (Plp) = Olp).

e The vector i) is an eigenvector of its projection operator with eigenvalue 1:

[WXW| ¥) = [PXlY) = [P), since [h) is normalized; () = 1.
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e The square of a projection operator is the same as the projection operator itself:
(DXPD? = [PXD] [PXY] = [Pl

e The trace of an operator L is, in matrix representation, Tr L = Y,;(i|L|i), which is
just the sum of L’s diagonal matrix elements.
The trace of a projection operator is 1:
TriyXy| = X (i|Y)|i), the sum of the diagonal matrix elements.
Tr|PXy| = Zi[p)Xli) = ZliXil) = (Ply) =1, since [¢) is normalized. Or,
since the projection operator is Hermitian and can be diagonalized and there is only
one eigenvector with unit eigenvalue(third bullet point above), the trace is the sum
of its eigenvalues.

e Add all the projection operators for a basis system and, we find Y;|i){(i| = I.
Remember Lecture 1.95, page 34.
Consider the vector |A) written in the basis form
|4) = X; a;i),
rewritten in the elegant form, a; = (i|A),
|4) = Xl i)(i|A4).
Then,
|4) = (ZliNiDA).
So, XiliXi| = I.
Or : X [i)(i| L age |k} = Xi|i) X ax(ilk) = X; [D)a; = |A), and consequently
2iliNi| = 1.
Remember: ), ax(ilk) = a;, where use has been made of §;;, = (i|k).
See also my notes on section 3.1.5.
The proof can be found in Dirac page 63.
At the end of this section, Susskind presented Eq.(7.12), and proved a theorem about
projection operators, a special case of the outer product, and expectation values,
Eq.(7.12): (YILIp) = Tr|PpXP|L.

There is more:

7.2.1 The projection operator and the Gram-Schmidt Procedure

In Lecture 3.1.6 the Gram-Schmidt Procedure is presented and explained. Here, the
projection operator (outer product) comes into play.

“Sometimes we encounter a set of linearly independent eigen vectors that do not form an
orthonormal set.”, page 67.

So, we have two kets, normalized:

|a;) and |a,) , with (a;|ay) # 0.

With the projection operator, |a;){a,|, construct a new ket:

las) = |az) — |ay ey laz) -
Then,

(aqlas) = (aq|az) — (aila aq|az) = (aq]az) — (aq]az) =0,
where use has been made of

(aq]a) = 1.
The new ket |a3) presents an orthogonal set with |a;). However, a orthonormal basis set is
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what we are looking for.
Let us introduce a number a = |a|?*{(as|az) = 1.
The new ket |a,) = a|as), with |a,), is the new basis set { |a;), |a4)}.
What about a? With |a3) = |a,) — |a ){aq|ay):
alaz) = alay) — ala;aq|az) =
= [a*(ay| — a™(a; [{aq]az)*][ alaz) — ala; Kaqlaz)] =
lal*[{azlaz) — (aq|aXaqlaz)" — (azlaslaq|ay) + (ailag aylaz Xay |a,)*] =
= |a|2[1 - Kaila)?l=1=
e~io
[1-l{aq|az)i2]t/2”
where ¢, represents phase ambiguity and (a,|a){@q|ay) = (aq|az) (a;|as).
Neglecting this ambiguity,
latz)—lag ) (0| @p)
1-—|{a o) (21172
The new basis set, { |a;), |@4)}, has been created.
As an illustration, | visualized the new basis set in the following Figure:

= aq =

lay) = alaz) = [

lD(,_,? =0 l0(5>
[ty 7=%) - a sl

e

i g P
AL LYRALYY,

Gram-Schmidt Procedure and projection operator (See Figure 3.1 page 68, Susskind)

7.2.2 The Projection Operator and the Space of States

In the foregoing section we developed a set of basis vectors, { |a;), |a4)}, for two-
dimensional vector space. This is a complete set.

Now, let us operate a matrix A on this two-dimensional vector space. A has the
aforementioned basis vectors as eigenvectors. The eigenvalues are denoted a4, and a,.
What are the elements of matrix A?

We have:

Alay) = aq|ayq),

and

Alay) = aylay).

| use the column representation of the kets:

e = (0) sl = (5.

The normalized kets give:
a’?+b?>=1,andc?>+b%? =1.
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The two vectors are orthonormal:

ac+bd =0.
There is more:

multiply A|a;) = a;|a;), to the right with the bra (a;|:
Alay Ny | = aq|aiXal,

multiply A|a,) = a,|a,), to the right with the bra (a,|:
Alagay| = aglasiayl.

Both expressions with projection operators are added:
Al Moy | + [aaXas]) = aglagXay | + aglasia,l.
As mentioned before { |a,), |@4)} is a complete set.
Consequently,

(eaes] + XD =1= (3 )

Hence,

A = ag|agfay| + aglagiay,l.

With the column representation used in the projection operators, we find
a’ ab c? cd 1 0

(ba bz) * (dc dz) - (0 1) '

This gives another set of relations between the elements of the basis vectors:

a’?+c?=1,andd? + b?* =1,

ab+cd=0< ba+dc=0.

There is some redundancy.

| found:

@) = (), and ) = (° ).

With b = V1 — a?, we are free to choose a = 1.
So,

la,) = ((1)), and |a,) = (_01) This choice could have been made from the start.
What about the matrix A?

— _ 1 0 0 0
A - all“l)(all + a4|a4)<a4| - al (0 0) + a‘l- (0 1)'
The elements of the matrix are the eigenvalues of the matrix:
_(a; O
A= (0 “4>'
Let’s formulate this in a more general way.
We have the operator L, and a complete set of kets |4;), spanning the vector space.
L|A;) = A A:),
where 4;, are the eigenvalues and |1;), the eigenvectors of the operator L.
Multiply L|A;) = 1;|A;), to the right on both sides with the bra (1],
LIA)XAi] = A4 14]-
Take the sum over i, the complete set,
LY | AMA] = Zi A 1A Al = L = X A |4 XA
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7.2.3 Expectation Value and Projection Operators

Assume a general ket |[¥) , expressed in the basis vectors of the complete set |4;):
W) = Xici |40

Now, we evaluate (W|L|W), the expectation value measuring the ket |¥).
Above, we expressed the observable in projection operators:

L =3 2; [A X4

Then,

(PILIY) = 3; AW 1IN W) = (PILIW) = 35 4 ¢ (| A )ep (A 4) =
=Y A I 121 A0) 1%

Now we see how the projection operators are “projecting out”:

(PILIW) = X A; |ci|?6:; = X Ailci] .

Well, this a familiar expression:

With Eq.(7.12):

(PILIW) = ¥ Ailcil* = X 4 P(A) = Tr|WXW|L.

7.3 Density Matrices: A New Tool

In this section, Susskind dealt with the case not having a complete knowledge of the state of
a system.

The expectation value (L) in Eq. (7.13) should be written as (L)(= Tr pL), a bold capital.
At the top of page 199, the matrix representation of the density matrix is given with respect
to the basis |a):

Paa = {alpla’).

| suppose this to be a matrix element. What does the matrix look like? For a pure state?

p the density operator is the projection operator the basis of which is |a):

p = |aXal.

pla) = |aXala) = |a).

So, the eigenvalue of this operator is 1.

Consequently Tr(p) =1,

and
(alpla) = (ala){ala) = 1.
Furthermore

(LY =Tr pL = {a|L|a).

In Lecture 7.6 an example is presented for an entangled state (a combined system).

The same question on matrix elements arises for the operator L and its matrix elements in
Eq.(7.14).

Furthermore, on page 199, where the expectation value is presented in matrix
representation, Eq.(7.14), the order of multiplication is changed compared to Eq.(7.13)(see
also page 209). It does not matter. In addition, the order of the indices a and a’ is important:
in this way Tr pL is represented.

Let us pay some attention to the expression presented in Eq. (7.14):

(L) =TrpL = Za,a’ Lot aPaa

The preceding expression is not easy “to read”.
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| choose for both operators 2 X 2 matrices. Both being Hamiltonian matrices:
L = <L11 L12)

Lyy Ly

and
_ (,011 P12)

P21 P22/

Then,
_ _ P11 P12\ (L1 L12) _ <P11L11 + p12Llz1 p1aliz + P12L22> _

(L) =TrpL =Tr (P21 Pzz) (L21 Ly, r P21L11 + p22Ll21 P21liz + p22lo:
= p11L11 + p12Llay + p21L1z + pazlan,
with,

L3, = Lip, and p31 = p13.
(L) = p11L11 + p12Liz + pialas + p22laa,
a real number.
Back to
(L) = TrpL = Za,a' La',a Paa’-
Witha =1,2anda’ = 1,2
Yaa’ La'aPaa = L11p11 + Li2par + La1p1a + Lazpao.
Hence, this clarifies the notation.
Keep in mind: TrAB = TrBA,
for the square matrices A and B.

Definitions:

- pure state. When the density matrix corresponds to a single state, it is a projection
operator that projects onto that state. Is a single state defined?

- mixed state. When the density matrix is a mixture of projection operators.

- full composite system?

7.4 Entanglement and Density Matrices

First the differences between classical mixed states and quantum mechanical entangled
states are discussed.

Quantum Mechanics: The state of a composite system can be absolutely pure, but each of its
constituents must be described by a mixed state.

Page 200, Susskind starts with a system composed of two parts A and B.

The wave function is given by ¥. | will follow the convention of page 136 and use for the
wave function . So, | prefer Eq. (7.15) to be written like:

(L) = (PILI¥) = Sapam ¥ (@'b) Loty gpb(ab),

as did Susskind on page 206. On the right-hand side of Eq.(7.15), for the general expectation
value, the expectation value is given in component representation.

Susskind paid attention to a situation where the observable L belongs to A. Then L acts
trivially on the b-index. This leads to Eq. (7.16).

| think Susskind explained this more elegantly on page 204 and Eq. 7.18.

In Eq.(7.17), Susskind presented the matrix element of the density matrix, | suppose. How
does this compare with the matrix element:

Paa’ = (alpla’),

at the top of page 199°
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Remark:

Is poq @ special density matrix where the influence of b is ‘traced out’ or projected out.
In the literature the expression reduced density matrix can be found. Is p,,’ a reduced
density matrix?

Below Eq. (7.17) Susskind writes that “Eq. (7.16) has exactly the same form as Eq. (7.14) for
expectation value of a mixed state”. | assume that this applies for the situation where the
elements of the density matrix p,,, are represented by Eq. (7.17).

Question: To me it is not clear that Eq.(7.16) has the same form as Eq. (7.14) for the
expectation value of a mixed state.

Eqg. (7.15):

(L> = (l[J|L|l[J) = Zab,arbl lp*(a,b,)l‘a’b’,ablp(ab) .

A is not interested in B. Now the observable L is associated with A and the observable acts
trivially on the b-index and (L) is represented by Eq.(7.16):

(L) = Xapa " (a’ D)Ly sp(ab).

We know p,,’ to be, (Eq. 7.17):

Paa’ = Zp¥P"(a’ b)y(ab).

With this expression for p,,/ , it is not clear to me Eq.(7.16) to have the same form as
Eq.(7.14):

(L) = Za,a’ La’,a Paa’

Unless Y (ab) is a (complex) number and L, , an element of a matrix, then Eq.(7.16) has the
same form as Eq.(7.14). Otherwise?

Then, Susskind continues: “Indeed, only in the very special case of a product state will p have
the form of a projection operator”. Question: p of the product state or p of the subsystem?
Then, “In other words, despite the fact that the composite system is described by a perfectly
pure state, the subsystem A must be described by a mixed state”.

Pure and mixed state as defined in Lecture 7.3?

First, let’s apply Eq.(7.17) for a product state given by Eq.(6.5):

|¥) = ayfuluu) + ayfqlud) + aqfyldu) + agfqldd),

and let’s calculate p, 4.

Giving, with a = u,a’ = d and summing over all b(= u,d) :

Pua = lpéulpuu + lpédlpud = aéﬁﬂauﬁu + aéﬁéauﬁd = aéau(ﬁZﬁu + ﬁ;ﬁd)
With Eq.(6.4), normalization for a product state, we have

Pud = (X;;Ofu,

Secondly, let us denote the operator for Alice p4 and for Bob pg, and use the column
representation of|¥), we obtain p = p, Q pg.

Note: Keep in mind the product state here to be a tensor product:

|¥) = {ay|u) + agld)} @ {Bulw) + Bald)} = [¥a) ® |¥p)

For completeness:

pa =190 ® ¥l = () ® (@ ap) =

and

al*lau a;;au)
ayag  agag)

oo = 1950 @ 5| = (5) @ g pid = (i iF);
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au,Bu
p= 11 ® Wl = | 2 | @ (@ibi ais @bl aibo)

aaPa
Then, with the tools presented in Lecture 7.1.2, after some tensor algebra and equating

4 X 4 matrices:
P =paQ ps.

7.5 Entanglement for Two Spins

Susskind started this Lecture with the definition of the density matrix and the following
exercise. A warming-up.

Exercise 7.4: About the density matrix for a given state vector

Calculate the density matrix for |¥) = a|u) + B|d).
This state vector represents a single state(page 198). The density matrix, which corresponds to a single state
is the projection operator onto that state(page 198).
So, p = |¥NY|,
and the matrix representation is illustrated by the example:
Pau = (ulpld) = (u|P)¥|d), page 202.
There are four of these elements. The example shown gives with the inner products of the state vector and
the basis vectors:
Paw = (ul(alu) + Bld)) (a*(ul + B*(dDId) = B a.
This one of the four elements of the density matrix.
Or, using the wave function notation, pg, = Y¥*(d)y(u), with subscripts: Y., -
Here, use have been made of p,,, = ¥*(a )Y (a).
Another one:
puy = (ul(alu) + Bld)) (@™ (u| + B*(d])|u) = a’a.
Then, we finally obtain for the elements p,, of the density matrix p:
(puu pud) _ (a’*a’ a’*ﬂ)
Pau  Pda Ba B*B)
With the normalization condition
(P¥)=a'a+p'p=1,
and the equal probability for up and down, a*a and 8 must both be equal to i (page 41).

1 1
Eandﬁ _iE

On the other hand, we could have worked with the column representation:
1 0 a * *
¥y =a(y)+8(]) = (p)and =@ B
Calculate |[#X¥|:
— a * * — aa* aﬁ*
9@ =(g)@ 8= (5o 5g)

Hence, we find a = . And we find again the two state vectors |r) and |1).

_(a'a a’PB

_(B*a BB

), Hermitian.

In Eq.(7.18), Susskind summarized how the operator works to obtain one observable of a
composite system:

La'b',ab = La'a6b'b'

The left-hand side of this expression is a 4 X 4 matrix, the right-hand side | a tensor product
of two 2 X 2 matrices.

Note: compare (7.16) and (7.19): Susskind mixed the lower case 1 with the uppercase V.
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Compare (7.21) with (7.14). Note: Susskind changed the order of tensor multiplication. It
does not matter. See the remark of Susskind just above exercise 7.5, page 209.

Remark: On page 207 Susskind presents some properties of density matrices:

Density matrices are Hermitian. In general, a density matrix is a sum of projection
operators, a linear combination of matrices, each multiplied by its probability, a
number. Projection matrices are Hermitian, consequently the density matrix is
Hermitian.

The trace of a density matrix is 1:

Tr(p) = 1.

P(a) is the probability that Alice’s system will be left in state a if a measurement is
performed. Now,

P(a) = Xp¥*(a,b)yY(a,b) = pgq -

Since ), P(a) =1, Tr(p) = 1.

The eigenvalues of the density matrix are all positive and lie between 0 and 1. It
follows that if any eigenvalue is 1, all the others are 0. For example:

p =P |PKP| + P|ONP],

then,

p|¥) = P1|¥), and p|®) = P,|D).

With Py + P, =1,wehave 0 < P; < 1,and0 < P, < 1.WhenP; =1,p = |¥N¥|,
and consequently a pure state. On pages 215 and 216 Susskind explains this in more
detail.

For a pure state p? = p and Tr(p?) = 1. A pure state: p = |¥X¥|, and

p* = (|¥N¥>

See page 195:

p? = [PUPIPNP| = PN

SinceTr(p) =1->Tr(p?) =1.

For a mixed or entangled state p? # p and Tr(p?) < 1.

Here mixed or entangled has the same meaning?

A mixed state, a composite state, an entangled state, ....... A conundrum of states.
Some explanation could be helpful.

Well, a subsystem of an entangled state is considered a mixed state. The entangled
state is a pure state?

Some explanation is given on page 208.
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Exercise 7.5 About the density matrix and the trace
2

a) Show that (g g) = (g 2) (g 2) = (CE)Z boz) , QED.

It is about matrix multiplication.

b) Now, suppose

c) p, represents a mixed or entangled state one of the properties of density matrices.

O | =

Calculate p? = ,then Tr(p) = 1 and Tr(p?) = g.

w R
win O
W=
win O

olh O
~—_ —

Exercise 7.6 For a density matrix the trace equals 1

Use Eq. 7.22 to show that if p is a density matrix, then Tr(p) = 1.

Eq. (7.22) reads: P(a) = paq-

P(a) is a diagonal entry of the density matrix p. We know Y., P(a) = 1. Consequently, Tr(p) = 1. See also
the second bullet point above.

7.6 A Concrete Example: Calculating Alice’s Density Matrix
In this section Susskind calculates Alice’s density matrix.

Remarks: concerning pages 210 and 211.
The calculation of the matrix elements of Alice’s density matrix are based on Eq.(7.20) { or
for that matter, Eq. (7.23)}:
Paa = Lo ¥*(a, b)Y(a’, b).
Compare this with Eq.(7.17) and you will notice that a’ and a have been switched. Well,
that’s not important. However, using Eq.(7.20) with for example a’ = u,a = d and summing
over b, you will find:

pua =P (d, WP, u) + P (d, A)P(u,d) # pyg {from (7.17)}.
| noticed from the matrix element at the bottom of page 211:

Pud = Patu »
illustrating the density matrix to be Hermitian— p,,/ = p_:, -
The same example for a’ = u,a = d and summing over b in Eq.(7.17), you obtain a value for
Pau F Pau - The latter found at the bottom of page 211.
What to do? An expression for the elements of Alice’s density matrix that works, read:
Pawa = 2p ¥ (a’,b)Y(a,b), Eq.(7.17). Whether or not this is the correct expression does not
bother us since the density matrix is Hermitian.
For the concrete example | assume the expressions at the bottom of page 211 to be correct.
At the bottom of page 201 Susskind made the remark: ” There’s a subtle point about our
notation ..........”. And on page 205: “As | warned, there are lots of indices”. Subtle indeed.
Caveat Subscriptum.
Additionally, you might wonder why Susskind changed for the notation of the wave function
from, say, Y¥,4 to Y (u, d). | do not know. Getting used to various conventions?
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Exercise 7.7 The square of the density matrix
1

0
Use Eq. (7.24), p = (2 >, to calculate p2.
0

)

For a mixed or entangled state, top page 208, p? # p, and Tr p? = % <1.

O N

S R

(=2 SN
NiRr O

NIk O
BHmr O

Remark: With this Exercise 7.7 there is no problem related with the index’s conundrum.
However, with the following exercise we are not so sure.

So let’s return to the full equation for the combined system Eq. (7.15) where we will use the
wave equation notation and the subscripts. Also using the subtle point of Susskind on indices
at the bottom of page 201, we have the following convention for the elements of matrices-
see Eq.(7.1): Ly, = (a|L|a’).

The full equation for the expectation value of L is, Eq.(7.15):

(l,U|L|l,U) = Zab,albl 1/):ubrLab,albllljab .

Now, when we use the same notation convention for Alice’s density matrix and for Bob's, we
have:

Alice pgaar = Xp YamWPap » and Bob pyy, = Xg Yapr Yap- (L7.1)
Note: when an index occurs twice in the summation the Einstein summation index
convention teaches us that we can delete the summation sign Z.

So Eq. (7.17) represents the elements of Alice’s matrix. From this we may conclude that p, 4
and pg4,, have been switched with no detrimental effect in Exercise 7.7 and at the bottom of
page 211. The density matrix is Hermitian.
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Exercise 7.8 Calculate A’s density matrix and B’s density matrix for three given states.
For each of the following states calculate Alice’s density matrix and Bob’s density matrix. Check their
properties.

1

1) ;) = 2 (Juu) + [ud) + |du) + |dd)), and oy = Pua = Yau = Yaa =5
The normalization condition is fulfilled. Now, we use Eq. L7.1.

Elements of Alice’s density matrix are: p,,, = YWy + YaaWua = %, and this value is found for all the
matrix elements of Alice.

— . — 2 —
So Patice = ’ Tr Palice = 1and Paiice = Paiice-

NIRN|R
N|[= N

Now Bob’s matrix. We expect this matrix to be equal to Alice’s since |¥, ) represents a product matrix with
amplitudes % Let’s find out. We take p,4; and find

Pud = VouWua ¥ ViuWaa = é This value is found for all the matrix elements of Bob.

SO Ppop = s T ppop = 1and pZoy = Ppob-

NIR N R
NP NP

The state is not entangled, a product state. See Eq.(6.5).

What does the projection operator look like? On page 201 Susskind writes: “Indeed, only in the special case
of a product state will p have the form of a projection operator. In other words, even though the composite
system is described by a perfectly pure state, subsystem A must be described by a mixed state”. So for the
above product state we have:

1 1
[product state) = |#;) = { (1) + )} & { (W) + 140} = P1.a11ce) ® [¥1500)-
And we can formulate the product state in terms of a projection operator.
roduct state = |¥1){¥1|. With the column vector representation of |¥;) and elements: 2222 we obtain
pp duct s 2727272

1 1

4 4

for the 4 X 4 matrix representation of pproguce state = ¢ ™ i
1

4

Tr pproduct state — 1, and Tr péroduct state — 1.

In addition: Pproduct state = [P P1] = Patice ® Prob-
2) |¥,) = \/% (Juu) + |dd)). A triplet state |T5,), certainly not a product state as we learned in Lecture 6. For
this case the amplitudes are: P, = PYyuq = %, and Y g =Yg, =0.

The elements of Alice’s matrix are found with help of Eq. (L7.1):

; 2 i 0 2 2 1
Paiice = 1 |and pajice = 0o Lf SO Paiice # Patice AN TT Pljice =5 < 1.
2 4

The elements of Bob’s matrix are also found with help of Eq. (L7.1):

1 1

2 1 1
PBob = Palice = 1 and plgob = 1 | S0 ppop # pl??ob and Tr plgob =3 <1

2 4

Alice’s and Bob’s density matrices are proportional to the unit matrix. In section 7.7.2 Susskind will explain
this phenomena.

Here it is shown again the triplet state |T,) to be an entangled state. Is this called a single state?

What does the projection operator look like? Well, certainly it is a 4 X 4 matrix of which the elements are
found by the vector representation of p = |¥)}{¥|. What is the meaning of this projection operator?

1 10.

The elements of |¥) are: O,E,\/—,

0000
0-20
The matrix then reads: pentangiea = 22
0550
000 O

SoTr Pentangled = landTr pgntangled =1
Furthermore Pentangled = [P (P2| # paice ® Ppob-

66




3) |¥;) = §(3|uu) + 4|ud). What kind of state is this one? We'll find out. It is normalized and looks like
meeting Pythagoras.

3 4
= gvlpud =9 and Ygy, = Pgq = 0.

The elements of Alice’s matrix are found with help of Eq. (L7.1):

1 0 1 0
Patice = (0 0) and pfllice = (0 0); pfllice = Patice NATT pyjce = Tr pfllice =1

The elements of Bob’s matrix are also found with help of Eq. (L7.1):

109 12 109 12

5(12 16) and pg’ob = E(lz 16)1 .DEziob = PBob and Tr Ppop = Tr péob =1

What kind of state is |¥5)? Looking at the density matrices of Alice and Bob, this state is a product state.

Using Eq.(6.4), normalisation conditions, and Eq.(6.5), the expanded product state and composite notation:
1

|[product state) = |u) ® §(3|u) + 41d)) = Y3ice? ® |W3p0b)-

. . 3 4 .
Pproduct state = |W3)X{¥3| . With the vector representation of |¥3) and elements: <»3, 0,0, we obtain for the

The amplitudes are Y,

Ppob =

4 X 4 matrix representation of

91200
_ 111216 00

Pproduct state 21 0000/
00O00O0

— 2 —
Tr pproduct state — 1: and Tr pproduct state — 1.
In addition Pproduct state = [P XP1] = Patice @ Prob-

Remark: Density matrix of a product state equals the tensor product of the two constituting
states

In the above Exercise 7.8 we included the density matrix of the composite state and found
for the product state the density matrix, pproduct state » t0 be the tensor product of the two
building blocks: Alice’s and Bob’s state, pajice @ Pgop - Can we prove that without using
amplitudes? Let’s have a look.

Proof by the method of contradiction:

The state vector for the product state is |¥) ,for Alice’s |¥,) and Bob’s |¥z). So we want to
prove: [PNY| = |Pu¥al ® |¥sX¥sl, (L7.2)
OF Pproduct state = PAlice & PBob-

We know for a ket vector:

EORANLAEAL O (L7.3)
where i refers to Alice’s or Bob’s state vector: ¥, or ¥ respectively. (see page 194, second
bullet point).

Eq. (L7.3) applies also to the bra vectors (¥;] .

Now, plug into Eq. (L7.2) in the left part and the right part on the right-hand side |¥p):
PN |¥p) = |PaXPal & [¥s)X{¥s| |¥p), this gives with Eq. (L7.3)

PN ¥p) = [PaX¥al & |¥p).

Plug into the right part and the left part on the left-hand side of the last equation (¥,] :

(Pal [PHP[|¥5) = (Pal |PaX W4l ® |Wp), this gives with Eq. (L7.3)

(Pal PN |WE) = (WUl ® |¥5).

Rewrite this equation by reversing the order of the two numbers on the left-hand side:
(W (P4 ||¥) = (W4] @ |¥g). In this equation we substitute for |¥) , |¥,) Q |¥5), and
for (W], (W4 Q (Wg|. Then we find:
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(V4] QW] |WPeXW4ll¥a) Q |Ws) = (¥y| ® |¥g) or the left hand side equals the right hand
side:

left (¥4| ® [¥p) = (V4| ® |¥p) right.

There is no contradiction and we have proven both product state examples in Exercise 7.8.

7.7 Tests for Entanglement

In this Lecture answers are looked for to questions like: are there various degrees of
entanglement, can they be quantified, etc.

Entanglement is the quantum mechanical generalization of correlation.

It is about a mathematical procedure.

7.7.1 The Correlation Test for Entanglement
It is about expectation values.

Exercise 7.9 For a product state the correlation to be zero

Given any Alice observable A and any Bob observable B, show that for a product state, the correlation
C(A4, B) is zero.

Note: A product state is a state with zero entanglement and consequently the correlation is zero. See
Exercise 6.1.

We know, Eq. (7.13): {(A) = Tr p4A, (B) = Tr pgB, and (AB) = Tr p,zAB.

We have a product state. So, we can make use of psg = Pproauct state = Paiice @ Ppop- Furthermore, the
trace of a product of two matrices does not depend on their order of multiplication. Then, we can write for
the correlation, Eq.(7.13) the expression for the expectation value:

C(A,B) =Tr ABp, @ pg — Tr Ap, Tr Bpg =0,

and since A operates on Alice’s state vector and B on Bob’s state vector

C(A,B) =Tr Apy ® Bpg — (Tr Ap,) (Tr Bpg) = 0.

Now, plug into this equation a general 2 X 2 matrix for

Ap, = (a11 a12)

az1 Ay
and for
b b
Bo. = ( 11 12)_
PB = \byy by
Then
Tr Apy ® Bpg = ay1b11 + ay1by; + azob1q + agzbys,
and
(Tr Aps)(Tr Bpg) = aqy1b11 + a11byy + azbig + agzoby;.
Hence,
C(A,B) =Tr Ap, @ Bpg — (Tr Ap,) (Tr Bpg) = 0.
For a product state there is no correlation.
C(A,B) =(AB) —(AXB) =0

Then, Susskind writes: “From this exercise we ca learn something about entanglement. If a
system is in state where one can find any two observables A and B that are correlated-
meaning that C (A, B) # 0 — then the state is entangled.” Well, what | learned from this
exercise for a product state C(4, B) = 0. Obviously, when C(4, B) # 0 is defined for an
entangled state, the answer is almost trivial.
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7.7.2 The Density Matrix Test for Entanglement

In this Lecture Susskind described a test for entanglement where only one of the density
matrices, A’s one or B’s one, is needed.

Here again, the proof is based on a product state—being not entangled.

On page 217, in the middle,

“..., she finds something very disappointing: the density matrix is proportional to the unit
matrix. All the eigenvalues are equal, and given that they all sum up to unity, each
eigenvalue is equal to 1/N,.” N, is the dimension of Alice’s space of states. See Exercise 7.8,
2).

7.8 The Process of Measurement

In the introduction of this Lecture Susskind mentioned the debates on so-called reality. An
interesting remark. See Smolin (1).

Then, Susskind mentioned: “I’'m going to steer away from those debates and stick to the facts.”
Whatever facts mean with respect to quantum mechanics.

Measurement and quantum mechanics: @ measurement involves a system and an apparatus.
Then, Susskind constructed a mathematical system including the measurement equipment, pages
219-221.

Remark:

At the top of page 220, six basis vectors are presented for the composite (tensor product)
space of states. So, a state is represented by a column vector of six components? In the
remark below, | presented the final state vector to be 2-dimensional. Does a 6-dimensional
vector collapse into a 2-dimensional one?

Exercise 7.10: a state vector—=completely unentangled state

Verify that the state vector, including the measurement equipment in Eq.(7.30), represents a completely
unentangled state.

The initial state vector is:

|¥) = a,|u, b) + a4|d, b), Eq.(7.30) .

Unentanglement means, in general, for the wave function, Y4, = Y, },.

For the above state vector, after inspection, we have: Y, = a,,, and Y4, = 4.

The initial spin state |¥;) = a,|u) + a4|d), and for the apparatus: |¥,,) = |b).

Verification: the initial state vector can be written as: |¥) =
(ay|u) + a41d)) ® |b) = ay|u, b) + a4|d, b).

Comparing this with Eq.(6.5), we know |¥) to represent a product state.

Remark:
On page 221 Susskind showed the final state(fs) : |‘Pfs) after the measurement.
For the up state: |u, b) = |u, +1).
If the spin is in the down state: |d, b) — |d, —1).
The state |¥) changes from a,,|u, b) + a4|d, b) into the final state:
|Wrs) = aylu, +1) + agld, —1) .
In column vector representation:

_ 1 0 oy [ Fu
¥rs) = o (o) ® FD +aa ({) © D = (g, )
This is an entangled state . This final state |‘I’fs) cannot be written as
(aylu) + aqld)) @ (| + 1) + | — 1) = ay|u, +1) + aylu, —1) + aqld, +1) + agld — 1)
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Since we find four contradictory expressions: a,, = 1,a,, = 0,4 = 0,and a; = 1, by
comparing this tensor product with the final entangled state |‘Pf5).

Conclusion, the wave function 14, cannot be factorized into ¥,;,.

Susskind added: “In fact, if a,, = —ag, it is the maximally entangled singlet state”.

Let us have a look. For the final state we find with Eq. (L7.1):

_(aay 0 )
ps_( O azad ’

and
Tr ps = a0, + oy .
Furthermore with Eq. (L7.1) for the apparatus

TT papp = Ay, + agag.
Normalization of the final state |¥5) shows a,a, + ajag = 1.
With help of this expression, we have Tr p2 # 1, and Tr pépp # 1. The density matrix py, of
the final state is found with help of the column vector representation of |‘1’fs). The elements
of the column are: a,, — ay4.

Prs is @ 2X 2 matrix:

a;au a:lau

(a:;ad aé}ad)'
and
Tr prs = agay, + agag = 1.Inaddition, Tr pf; = (ajay + ajag)? = 1. A pure state? Last
bullet point on page 207.

. . . . . 1 . .
With a,, = —a,4 we find aja, = azjay and aja, = > Neglecting a phase factor this results
. 1 . . .

into a,, = R Now it becomes clear that for a,, = —a, there is maximum entanglement.
Look at p;:

_ [ty 0)_110 : - : : .
pPs = ( 0 aay) = 2 (O 1). The density matrix is proportional to the unit matrix. Each

measurement outcome is equally likely.

| did not understand the line at the bottom of page 222: “But then there is good old
Charlie....” .

On the pages 232, 233 and 234 Susskind summarizes entanglement for a product state, a
singlet state and a “near singlet”. He concludes this lecture with a remark on reality and
confusion. So, the debate, mentioned at the beginning of this lecture, continues.

7.9 Entanglement and Locality.
This Lecture starts with another debate: is quantum mechanics local or nonlocal?
Then, Susskind explained the meaning of locality.

7.10 The Quantum Sim: An Introduction to Bell’s Theorem

This Lecture started with the remark: “.. that unitary played a prominent role in
guaranteeing that no signal can be send instantaneously.”

Susskind spent attention to the subject matter: “... he (Einstein) and Bell were talking about a
totally different notion of locality....” , compared to the locality discussed in Lecture 7.9.
Then, Susskind invites you to play a computer game. Starting with one computer and next,
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with two computers.
Susskind concluded this Lecture with the remark the problem not being a quantum
mechanical problem.?

7.11 Entanglement Summary.
This Lecture started with the remark entanglement being “the hardest concept to accept”.
Then, a compact summary of entanglement is presented.

Rap Sheet 1 State-Vector No Entanglement

This rap sheet is about a product state (No entanglement).

Wanted for: Excessive Locality, Impersonating a Classical system.

Description: Each subsystem is fully characterized. There are no correlations between A’s

and B’s systems.

The numerical values for normalization:

A product state |¥p,oquce) is the result of completely independent preparations by A’s -

and B’s system. See page 163:

|¥a) = aylu) + a4ld), and

|¥5) = Bulu) + Bald).

So, the State-Vector

|Pproduct) = |¥a) ® |¥p), Eq.(6.5).

(PalP4) = 1and (Pp|¥5) = 1.

These normalization conditions produce Eq.(6.4):

ayay +agag =1 and Byfy + Bafa = 1.

Before going any further, let’s do some ket, bra and tensor algebra.

<lPProduct|lpProduct> = (a;au + a:lad)( ﬁ{iﬁu + ﬁ;ﬁd) = (lPAIqJA)(lPBIlPB> =1

Also (Pproauct| Prroauct) = ((Pal & (P (|Pa) ® W) = (¥4l ® (¥5]¥a) @ |¥5).

Now | want to recall the footnote of Susskind on page 193: “Sometimes we can change left-

to right ordering as well, but that requires more care”.

So can we write:

<l1UProduct|l1UProduct) = ((WAl ® <11UB|)(|11UA> ® |11UB)) = <11UA| ® |!1UA)<11UB| ® |11UB) ?

Does it appear that (¥4| ® |¥4) = (W4|¥y) = 1, and (V| ® |¥p) = (P |¥p) = 17

When we use the column vector representation for |¥4)and |¥5) : it seems to be all right.

This is nice!

The density matrix for the product state:

with Eq.(L7.1) and the product state vector |¥p,.ogquct) We find for Alice’s density matrix:
Ay,  ayay

(a{‘;ad a0y

a,o, — A agay,
a, g agag — A

A2 = (apa, + ajay)) =0,

where use has been made of aja,a 0y — a0 = 0.

The one nonzero eigenvalue: 4 = 1.

). The determinant for the eigenvalue A is:

= 0. Which produces a quadratic equation for A:

3 An example of entanglement research is presented in the Science and Technology Section of The Economist
August 15™ 2020. The title: Quantum Mechanics, A flutter in time. “There are no butterflies in the quantum
realm.”
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The associated eigenvector, with general components ( a4, a,), is found in the following
way:
asa, azay) 0y a, a; ay
(agaz agaZ) (az) =4 (az) - (az) - (ad)'
As Susskind says: “The same goes for Bob”.
The wave function can be factorized.
This follows from comparison of the composite notation for the product state in
Eq.(6.5):
|quroduct> = ayfuluu) + ayfqlud) + agfyldu) + asfqldd),
with the most general vector in the composite space of states on page 165:
W) = Yy [ur) + Py lud) + Payldu) + P aqldd).
So, for example Y,,4 = a,B4-
Another approach: let’s take ¥4
Yua = (udll’llproduct) = (u| ®(d|¥4) ® |¥p) = au(d|¥p) = aufa-
Take notice that use has been made of (u| multiplies with |¥4) and (d| with |¥g). To find
out about this tensor multiplication, use the column vector presentation of |ud) and

auﬁu

a
|l‘Uproduct> : (ud|lluproduct> = (0 10 0) ’ uPa = ayBg.
adﬁu

Expectation values:
2 2 2
(g,)" + (ay) +(0,)" = 1.
We can prove this equality by straightforward applying the definition of {g,), (ay) and (a,):
<0x> = <lpproduct |O_x|l‘yproduct>: etc.
With |¥) = Y |uu) + Yuqlud) + Yaldu) + Paqldd) , the Pauli matrices and the
Kronecker delta we find:
(o) = aja, + asay, (ay) =i(aja, —a,ay), and (0,) = a,a, — ajay.
This results into:
2 2 2 * %
(oy)" + (O'y) +(0,)" = (@, + ajay)* = 1. (Eq. 3.27).
The same goes for Bob’s 7 with « replaced by £3.
Another approach for expectation values is using the density matrix p. We take for example

(ox)-

. . a0, ayay
We already calculated the density matrix psjice = (aﬁad a(’;ad>'
So,

Aty gy (0 1 \ \

(ox) =TT patice0x =TT (a;iad a:iad> (1 0) =gy, + ayuag.
Correlation: (0,7,) — (0, ){t,) = 0.
With the knowledge of (g,) = a;a, — aja, we find:
(t2) = BuBu — BaBa-
This gives for (o, X7,) = (aja, — agaq) (Bufu — Baba)-
<GZTZ) = (q]productlo-szlqlproduct) = (a;iau - a:iad)(ﬁzjﬁu - B;Bd) = <O'z)<Tz)-
Hence
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(UZTZ) - <UZ)(Tz> =0,
no correlation.
Now the approach with the density matrix. | like to recall that for a product state:

1 0 00
— _[0-=100 .
Pproduct = Patice @ Ppop, and o; Q 7, = 0 0—10 ) Now with all the elements
0 0 01
known: (asz) =TT Pproduct0zTz =
1 0 00
- r pAlice-® PBob 0 0—-10 - (auau - adad)(ﬁu.gu - .Bd.Bd)-
0 001

To find this, you must do a lot of bookkeeping. Let’s look again at :

(0,7,) =Tr Pproduct9zTz =TT Paiice Q PBopTz & Ty

We know o, to operate on Alice’s system and 7, on Bob’s:

(0,7,) =Tr PproductOzTz =TT Paiice0s Q PpopTz and

<O'z)(rz) =TT Paticed;TT PpopTy -

We substitute for pg;c.0, a general 2 X 2 matrix A with elements A;; and for pg,, T, the

2 X 2 matrix B with elements By;. We know Tr A® B = Tr A Tr B.Then (0,7,) = A;;Bkk
and (0,)(t,) = A;;By). With Einstein’s summation convention:

(UZTZ> - <GZ>(TZ> = 0;

no correlation.

Rap Sheet 2 State-Vector Maximum Entanglement

This rap sheet is about a singlet state (maximum entanglement).

Wanted for: Nonlocality, Complete Quantum Weirdness.

Description: The complete system is fully characterized. There is no information about A’s -
or B’s subsystems.

The state vector:

. 1
|Wene) = |Slng) = ﬁ(llld) - |du))r Yuu = Yaa =0
and in general

|¥) = Yyyluu) + Puyqlud) + Yayldu) +Pgaqldd).
So,
1
Yua = —VYau = N
The normalization condition is: ¥, Yy + YauaWua + YauWPau + Yaq = 1, page 166.
The density matrix:
For the full composite system p? = p, and Tr(p?). Consequently we can p,,; as a projection

operator. Definition of: the full composite system?
1 1

'\/21_\/_5'0'

Pent = |Wene{Went|, With the amplitudes of the state vector, 0

With the column vector representation of the state vector:

0

1| 1
|11Uent>=ﬁ 1)

0

73



we obtain for 4 X 4 density matrix:

0 0 0O
0 =—=0
_ 2 2
\0 -2 20
2 2
0 0 0O
Note: top page 208, bullet point, “For a mixed or entangled state p? # p, and Tr(p?) < 1”7?
And, T pene = TT pZ,; = 1. What is going on here? A full composite system is not a mixed
or entangled system? However, this rap sheet is about maximum entanglement. Is there a
difference between entanglement and maximum entanglement?

Page 201: “Indeed, only in the very special case of a product state will p have the form of a
projection operator”.

. Then pZu = Peng-

The density matrix of A’s subsystem, with help of Eq. (L7.1):
Paar = 2b YurnWap » We find for the elements of A’s density matrix: py, = paa = % and
Pud = Pau = 0. 50,

=0 ~ 0
Patice = (2) 1 |and .031 = g 1 pTr pfllice <1
2 4
Pa = %((1) (1)) The density matrix is proportional to the unit matrix with eigenvalues that

add up to 1. Each measurement outcome is equally likely.
Wave function:

1 ,
Yua = —Yau = 7 cannot be factorized.

Exercise 6.3: |sing) cannot be written as a product state. Eq. 6.5:

|lpproduct> = ayfulun) + ayfqlud) + agByldu) + agfqldd),

represents the product state. We compare this equation with the expression for |sing) and
find a,, and/or B, is zero. Also a; and/or B is zero. Consequently, the state |sing) cannot
be written as a product state.

Expectation values:

(O’x) = (O'y) = (g,) = 0, on page 173 and 174 Susskind give the proof of the numerical
values of these expectation values. And he concludes: “Needless to say, the same is true for
the expectation value of t”.

(T,0,) = (ryay) = (1,0,) = —1, from page 177 and 178 we learned:

Tx0x|sing) = ryay|sing) = 1,0,|sing) = —|sing), then

(sing|1xax|sing) = (T,0,) = (sing|ryay|sing) = (TyO'y) = (sing|t,0,|sing) = (1,0,) =
—(sing|sing) = —1.
Then the correlation {(g,7,) — (0,){(1,) = —1. Reminder: g, and 7, are just one and the same
operator.

Rap Sheet 3 State-Vector Partial Entanglement
The near-singlet(ns) state vector (Partial Entanglement).
Incomplete information about the composite system and about the subsystems. There is

74



some information about the composite system, and some about each subsystem.
The state vector: |¥,,) = v0.6|ud) - v0.4|du),
Yy = WYaqa = 0and P,y = V0.6 and Yy, = —V0.4.

The normalization condition is: ¥, Yy + YiaWua ¥ VouWPau + Vaq = 1.
The density matrix:

For the composite system p,,s = |Wps){|¥ns|, with amplitudes of the state vector:

O, \Y 06, -V 04; 0;
0
V0.6
|lpns> = ’
—/0.4
0
and assuming pns = | W ){|¥ns|
0 0 00
0 06—-—+0.240

Pns =\ 0 _ V022 04 0

0 0 00
Then,

Prs * Pns and Tr prg < 1.

For A’s subsystem, with help of Eq. (L7.1): pgar = 2 YapPab » and the expansion on page
211, A’s density matrix:

_ 06 0 ~
pA—(O 0.4)—>TrpA—1 and,
, (036 0 )
pk=("y" g16) 2 TTAA<L

Wave function:

Compare the state vector |¥,) = v/0.6]ud) — v0.4|du), with the product state vector
|‘I’pmduct) = a, By luu) + ay Bqlud) + azB,ldu) + azB41dd), and we find a,, and/or B, is
zero. Also 8, and/or B, is zero. Consequently, the state |¥,;) cannot be written as a product
state and not be factorized.

Expectation values, with Eq.(7.4)

(Jz) = <l1Uns|O-z |lpns> = (llunslo'z 1 |l1Uns) =

10 0 0 0
_ B 01 00 V0.6 | _ . .
=(0,v0.6,—V0.40)( o 5 _1 o _Joa =06-04=02.
00 0 -1 0
(Jx) = <l1Uns|0-x |l‘Uns) = (llunslo-x I |l‘Uns) =
00 1 0 0
_ _ 00 0 1 V0.6 |
=(0,v0.6,—V0.40)( ] 5 o _Joa =0.
01 00 0

Likewise, (a;,) = 0.

(T2) = (Wns|t2 [Ps) = <11Uns|1 & 7, |Ws) = —0.2.
Furthermore (7,.) = <Ty) = 0.



1 0 00
0-100
Q0 =, 0_10>,
0 0 01
0 0 0 0
gives with p, . = 0 06—+v0.24 0
0-+v0.24 040
0 0 0 0
(120) =TT pps 1, @ 0, = —1.
0001
0010
Ty Q 0y = 0100]/"
1000

gives with p,:

(Tx0x) =TT prs Ty @ 0x = —27/0.24.

Or

(Tx0x) = (Pns|(I @ T,) (0x ® 1) |Wns)-

Caveat: p,,sT, & 0, is not an Hermitian operator!

Correlation:

We have all the building blocks. In addition, (t,0,) = {(0,7,). So {0,T,) — {(0,){(t,) = —0.96.
The correlation is between —1 and +1, or more accurate 0 < |(7,0,)| < 1.

So, for a partially entangled state the 0 < |correlation | < 1.

Exercises 7.11 and 7.12 are included in the rap sheets.

7.12 Definitions

- mixed state, when the density matrix of that state is a mix of several projection operators.
- single state,

- composite state,

- pure state, when the density matrix corresponds to a single state, it is a projection operator
that projects onto that state. Furthermore: p? = p, and Tr(p?) = 1.

- entangles state,

- maximum entangled state, |correlation | = 1.

- partial entangled state, 0 < |correlation | < 1.

- composite system,

- full composite system,

- subsystem,

- mixed or entangled state, p? # p, and Tr(p?) < 1.

Some definitions are needed or clarifications?

Lecture 8. Particles and Waves.

This Lecture is about: “... the nonclassical logical principles that govern their behaviour [of
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particles and waves]”.
Linear operators and the state of a particle are discussed.

8.1 Mathematical Interlude: Working with Continuous Functions

8.1.1 Wave Functions Review

First the results of Lecture 5 are reviewed.

To remember, at the top of page 237: “But notice: the specific form of (1) depends on the
specific observable L that we initially choose”.

Remark:

In Lecture 8.1 Susskind writes, bottom page 237: ” You can think of the wave function in two
ways. First, it is the set of components of the state vector in a basis. These components can
be stacked up to form a column vector”. See for example Lecture 1.9.3. These components
are called the probability amplitudes or wave functions. Susskind continues: “Another way to
think of the wave function is a function of A. If you specify any allowable value of A, the
(wave)function (1) produces a complex number. .......When thought of in this way, linear
operators become operations that are applied to functions, and give back new functions”. |
would have preferred a rigorous proof. We come back to that later.

Reminder, classical and non-classical:

P() =Dy (D).

8.1.2 Functions as Vectors

In this Lecture, Susskind explained why “we have to expand the idea of vectors to include
functions”.

At the bottom of page 239 and at the top of page 240, Susskind summarized the axioms that
define a complex vector space. Complex functions satisfy all of them (See Lecture 1.9.1).

To replace sums by integrals is to find a particle in a small segment dx.

Eq.(8.2) represents the continuous representation of the inner product.

Probability densities replace probabilities.

Dirac delta functions replace Kronecker delta.

The Dirac delta function is introduced, pages 242-245, and defined by Eq.(8.4).

In Chapter Ill on Representation, Dirac explained the need for the & function to deal with
certain infinities. Feynman Vol Ill 16-4 used the  in the section on normalization of the
states x. Furthermore Feynman is additional instructive reading about the position operator.
In Chapter 20 Operators of Vol Ill Feynman presented an example of integration by parts in
the section on The momentum operator.

8.1.3 Integration by Parts
This is a strong tool to evaluate integrals since the wave function must go to zero at infinity.

8.1.4 Linear Operators
Susskind rehearsed the concept of operators.
As an example the operation: multiply by x represented by the operator X and the

operation d/dx represented by the operator D.
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Exercise 8.1 Prove the position operator and the differentiation operator to be linear.
Prove that X and D are linear operators.
e  Operator acts on a function giving another function.
e  Operator acts on the sum of two functions giving the sum of the individual functions.
e  Operator acts on a complex numerical multiple of a function giving the same multiple of the original

results.
See page 53:
M|A) = |B),

Mz|A) = z|B) and

M(|A) + |B)) = M|A) + M|B).

As an example for a function we look at Eq.(8.5):

XY (x) = xp(x). Assume P (x) to be: P(x) = f(x) + g(x), then
Xp() = X(F@) + g(0) = x(F(x) + g (1) = xf (x) + xg(x).

Remark:
In this Lecture, Susskind showed the operator D not to be Hermitian. Instead of D, he
introduced - ihD. Plugging this operator in the Egs.(8.7) and (8.9) , we find,

(¥|—ihD|®) = —ih [ " L2 gy,

and

(®|—ihD|W) = —ihf¢*%cx)dx.

Integration by parts:

(@|—ihD|¥) = if [ (x) LD dx = (¥|—ihD|d)
Showing - ihD to be Hermitian.

8.2 The State of a Particle

First the state in classical mechanics is explained. Based on classical mechanics, a state in
guantum mechanics is proposed. Susskind: This is incorrect, page 251. It is not position and
momentum. However, it is position or momentum: The two do not commute. A result of
experimental observations.

8.2.1 The Eigenvalues and Eigenvectors of Position

Susskind starts with the operator X, the observable of position, and looks for the
eigenvectors and eigenvalues of the eigen-equation:

X|¥) = x0|¥),

where X is the eigenvalue.

Then: “In terms of wave functions, this becomes:

xP(x) = xoyP(x), Eq.(8.11)".

| refer to the above remark on wave functions. We learned that for a basis |x) the wave
function (or probability amplitude) is found from the inner products of the state-vector onto
the eigenvectors (page 237) . Can we apply this to the above eigen-equation (8.11)?

Well, let’s have a look: x is a real number and X does not operate on x. This does not apply
to the operator D! So let’s multiply (x| into the eigen-equation: X|¥) = x,|¥), we have
(x|X|¥) = (x]xo|¥).

Then we find X(x|¥) = x,(x|¥). With the definition of the wave function, (x|¥) = ¥(x),
X(x|¥) = X (x) = xo9p (x).
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Eq. (8.5),

Xp(x) = xp(x),

changes the eigen-equation into

xP(x)=xo(x) , Eq.(8.11).

| feel a bit more comfortable with the above approach.

Remember in the discrete situation we would have written for ¥ (x): y,.

On page 253, the workings of the Dirac delta function is shown, leading to the conclusion:
P(x) = 6(x — xo).

Note:On page 254, in the middle, dx is missing in the integral:f_oooo §(x — xo)Y(x)dx. A
typo.

Susskind writes: “By the definition of delta functions given in Eq.(8.4), this integral evaluates
to (xo|¥) = ¥(xy)". | prefer to start with (xy|¥) = Y (x,) and follow Feynman. We have by
the definition of §(x):

P (0) = [ 5(x)(x)dx. Now change the argument of the delta function from x to x — x,
and we obtain: [ §(x — xo)Y(x)dx = P (xp).

On the other hand, Susskind derived Eq. (8.13),

(x|¥) = P(x),

by using the Dirac delta function. In this way, he proved the assumption xy(x)=x,y(x) to
represent the eigen-equation X|¥) = x,|¥).

Now something different. The position eigenfunction with eigenvalue x, is:

Y(x) = 6(x — xo).

What does this tell us about the expectation value of X?

Well, we know: (X) = [*(x)xp(x)dx = [ §(x — x0)x8(x — xo)dx .

We expect this expectation value to be x,, the eigenvalue of the operator.

So [ 8(x — x0)x8(x — x0)dx = xg .

Furthermore, the normalization condition is: [ §(x — x)8(x — x¢)dx = 1.

This condition is given by Dirac, page 60, Eq. (10), by setting b = a = x;, and make use of
Eq. (6), on the same page, 6 (—x) = 6(x).

6(x — x9)8(x — xp) has the same character as 6 (x — x;):

6(x —x9)0(x —xp) = 0for x # xq,

and becomes sufficient large for x = x and,

s0, [ 8(x — x0)8(x — x0)dx = 1.

The least we can say: §(x — x4)6(x — xp) X 6(x — xy),

since we have [ §(x — x0)8(x — xo)dx = 1 = [ §(x — xo)dx.

Hence:

(8(x — x9))? = 8(x — x). With " = " | mean identical behaviour.

Dirac did not mention this. | assume he considered this to be trivial.

In addition we can write (§(x — x0))3 = 8(x — x0)(6(x — x9))? = 85(x — x9)S(x — x) =
& (x — xp). With proof by induction, we find forn € N: (§(x — x5))™" = §(x — xp).
Basically | consider the above derivation not to be elegant. More or less we imply (X) = x,.
Can we do better?

Let’s replace x by y + x,:

(X)=[" 80N +x0) 8()dy = [ 80Ny dy +xo [, 8(NEX)dy .
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For the first integral on the right hand side we use Dirac’s toolkit, page 60- Eq. (7):
yé(y) = 0.

The second integral on the right-hand side gives with the normalization condition: x.
Consequently: (X) = x,.

More concise : (X) = (y + xo) = (¥) + xo = x,.

8.2.2 Momentum and Its Eigenvectors
The momentum operator P is presented in Eq.(8.14), the relation between the momentum
operator P and the differentiation operator D.
The eigen-equation, in vector notation, Eq.(8.16):
P|¥) = p|¥) or
using the wave function:
hdw(x) = pyY(x) or

dy (x)

—= Sy T, (). (L.8.1)
The subscrlpt p is a reminder that 1, (x) is a wave function of P with the specific eigenvalue
p in the position representation. At the bottom of page 256 Susskind denoted i, (x) to be

the eigenvector of P. | consider that to be a bit confusing, it is about the wave function.
Finally, the expression for 1, (x) is obtained by integrating (L.8.1), page 256,

Yp(x) = Ae%. (L.8.2)
The factor A is found by normalizing (L.8.2). Susskind: “Normalizing the eigenvectors is a
more subtle operation, but the result is simple”.

A=1/2m.

Subtle indeed.

In the citation of Feynman, | used the Susskind notation:

Feynman: “There are several ways the normalization can be adjusted. We will choose one of
them which we think to be the most convenient, although that may not be apparent to you
just now”, Vol lll, 16-3.

Then, Feynman looked at an example- for instance one in which a particles localized in a
certain region around x = 0. Feynman choses a sort of smeared out delta function and
obtained an expression for 1,,(x). You can cheque the normalization condition by plugging

this expression into the probability distribution |l/Jp (p)|2 and integrate. You will find this

to be equal to 1. Feynman: “With the normalization chosen for the probability distribution
the proper constant A (Susskind notation) is just 1”.

Maybe we need a dialogue Feynman-Susskind, one like the dialogue Democritus- Lederman (
The God Particle)? Of some help could be the integral representation of the §-function:

5(y) = if_oooo e*Ydk, (Chisholm and Morris).
Well, let’s find out whether this helps us to find out about A (Noordzij, 2).

We define two eigenvalues p and p'.
Now with the integral representation of the delta function,k = x andy = (p — p")/h :

L[ ix®@-P/hgy = §[(p — p')/A] .

21T ¥ —®©
Well, you see it coming:
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% f_""ooeix(P-P')/hdx — fjom\/%e‘ix(p')\/%eix(p)/hdx = 8[(p —p")/A].
The integral represents the product of a plane wave eigenfunction with eigenvalue p and a
complex conjugate wave eigenfunction with eigenvalue p’. This expression shows the
compliance with the normalization and orthogonality condition. The delta function on the
right-hand side can be written as, Dirac(page 60), A 6(p — p').

It is a kind of magic, the Dirac §-function. To have a proper delta function on the right-hand
side, take note we find in this way A to be 1/4/2rh. See the exercise below on normalization

with Dirac Delta Function Approximation and the “Feynman factor” ﬁ . Fitzpatrick also

obtained the factor 1/v/2mh. What about the “dimensionality” of the wave function? | leave
that question.

Mahan indeed shows how to obtain the above constant A with help of delta-function
normalization. However, using the plane wave function. There is no need for that.

We will do an additional exercise on normalization, next page.
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Exercise on normalization with Dirac Delta Function Approximation

We will use the approximation of Susskind 6 (x) = \/%e‘("x)z, pages 243-244, Fig.8.1.

So,
— 1 ,-(nx)?

Px) = e ,

an approximation with the particle localized in a certain region around x = 0.

However, this wave function is not normalized. We must plug in a constant, B say, to be flexible. Then,
— B p—(nx)?

Y(x)=B =e .

With the normalization condition ffooo Y ()Y x)dx =1,

we find for B: B = (?)1/2 and Y(x) = (n\/%)l/Ze—(nX)z'

In this case we can still choose a number for n. For B = 1, the normalization condition gives: n = V2. The
number n is fixed.

Figure 8.1 gives an idea what this approximation looks like.

Now we have:

ipx
Y,(x) = Ae’n, and we want to find A by normalization. We start with the wave function in the
momentum representation (page 263):

() = [ dx(plx) (x|¥).

ipx ~
(plx) = ¥, (x) = Ae'n and we use for (x|¥) the delta function approximation, the result for 1) (p) is :

B = A [92 [, exp (-2~ ().

This can be written as:

1 2y1/2 — (22 (@ - 2 = At [H1/2 —(Ly2 =4
A [ exp (<G 7, exp (~(m?ydnu = A [HV2exp (- (2?) Vi = $p).
(Feynman citation: “The mathematicians would probably object to the way we got there, but the result is
nevertheless correct”.)
2
Feynman used for the Dirac Delta Function Approximation: Y(x) = K- exp (— (i) ) o is a measure for
the half-width of the curve and K a constant to be determined by normalization. The remark by Feynman
about mathematicians has something to do with integrating a complex function.
Now [~ " (p)¥ (p)dp = 1.
2¥2m (o —2 (P\\dp =

Then A2 = S exp (=2 G.-)%)dp = 1.
This leads to:

— (1 12 i 1
A= (Zh\/E) . Well, this is not near —.
What about the dimension of A? This cannot be correct. Feynman, to find A, used for the probability
distribution | (p)|? d?p. Then, with the normalisation condition f_t P (p)Y (p) 2‘% =1,A4=1

However, Susskind found 4 = % When we take for the probability distribution [{(p)|? dh—p, we finally

obtain \/% The Feynman factor ﬁ is found by trial and error? Or is it the magic of the genius? For sure, |

found the factor% by trial and error.

Again: subtle.

4

On top of page 258 Susskind writes: “......Eq. (8.18). The second equation is simply the
complex conjugate of the first. These results are easy to verify if you keep in mind that |x) is
represented by a delta function”. Verify what? That the two functions are the complex
conjugate of each?

(xlp) = (plx)".
ipx
Or we need to verify 1, (x) = \/%_n en?
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Well, in general (@ |¥) = ffooo((blx)(xlq/)dx.
Then,

(Xolp) = [, 80x — x0) Up(X)dlx = 1y (xg) = 7= 7.

Since this applies for any xo: ¥, (x) = (x|p) = \/%eT.

Furthermore on page 258, point 2. Susskind writes: “We have been using the symbol ) for
both position and momentum eigenstates.” | still think the symbol for eigenstates is .
On the pages 258-260, Susskind reflects on the wave function, momentum, and wavelength.

8.3 Fourier Transforms and the Momentum Basis

The importance of the wave function for determining the probability of finding a particle at
position x is mentioned on page 260. Again, this presentation was proposed by Born.

So, completely similar, the probability of a particle having momentum p is obtained.

This is presented in Eq. (8.19).

| prefer the notation: P(p) = |[{p|¥)|?.

And Eq.(8.20): Y(p) = (p|¥). See top of page 263.

As mentioned by Susskind, there is a relation between the momentum representation and
the position representation. Both represent the state-vector: |¥) .

8.3.1 Resolving the Identity.

The trick is resolving the identity using the identity operator I, derived for the discrete case,
for the continuous case.

In Egs. (8.21) and (8.22) , the identity operator is presented twice: in the two basis vectors.
On page 263, Susskind elegantly presented the transformation of a wave function in the
position representation into the wave function in the momentum representation.

On page 264 their relationship with Fourier analysis is mentioned.

8.4 Commutators and Poisson Brackets.

Two important principles about commutators:

- The connection between classical and quantum mechanics.

- Uncertainty.

Susskind discussed the connection between quantum mechanics and classical mechanics. It
is about commutators and Poisson brackets to some extent represented by

Eq. (8.26), based on Eq.(4.21),

[L,M] < ih{L, M}. L and M are operator symbols.

Susskind: “....we’re reminded that the equations for quantum motion strongly resemble their
classical equivalents.”

In Eq.(8.29) the commutator [X, P] is derived from Egs. (8.27) and (8.28).

In Chapter IV On Quantum Conditions, Dirac gave the expression uv — vu = ih{u, v}, Eq. 7.
Here we used the Susskind notation for Poisson Brackets. Furthermore in Eq. 7, w and v are
dynamical variables. As defined by Dirac, dynamical variables whose eigenstates are a
complete set are observables. For the canonical coordinate x and canonical momentum p,
Eq. 7 of Dirac can be written with the notation of Susskind as [x, p] = ih{x, p}.
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Page 268, {x,p} = 1 and consequently [x, p] = ih. Again, square brackets represent a
commutator.

8.5 The Heisenberg Uncertainty Principle

See Lecture 5 to read about the general uncertainty principle.

Eq.(5.13), the simultaneous uncertainties of the observables A and B

AAAB > 2| (P[4, B]|¥) .

The position and momentum operators are plugged into the preceding expression, bottom
page 269.

Susskind writes, page 270: “On the other hand, the probability P(x) for a momentum
eigenstate is uniformly spread over the x axis. To see this, let’s take the wave function,

Eq. (8.17),

ipx
Yp(x) = \/%_n e v and multiply it by its complex conjugate:
ipx

ipx
Yy ()P, (x) = \/%_n e n Nor en = i The result is completely uniform”.

Now we also know, Eq.(8.3):

JP)dx = [ ¢, ()Y, (x)dx = f_ooooidx =1.

Is this a surprising result? Well, the result is wrong. Here the Heisenberg uncertainty
principle is at work:

fP(x)dx — 00, since as mentioned by Susskind, the eigenstate of the position is a Delta
function giving the position exactly at x,. Consequently AX - 0 and AP - o .

Well, there is still something uncomfortable here.

Note: The probability P(x) is uniformly spread over the x-axis. Let’s start with a uniform
distribution over an interval (0, a). P(x) = A, a constant over the given interval. Then
normalization gives:

anP(x)dszaz 15A4=21.

a
Hence, for a uniform distribution spread over the whole x-axis:a - c0oand A - 0

Question:
The wave equation. Susskind mentioned on page 258, Y (x) to be “..just the generic symbol
for whatever function we happen to be discussing”. Now we used in Lecture 8 various wave
functions:

e Y(x) = §(x — xp): this wave function represents states in which the particle is
located right at the point x, on the x axis; the position representation, page 253.

ipx
. wp(x) = \/%_ne h - : the momentum eigenfunction of the operator P in the position

basis, Eq.(8.17). The basis vectors are: |x). A wave function | suppose? Feynman: if a
particle has a definite momentum p and a corresponding definite energy E, the

ipx
amplitude(wave function) to be found at any position x would look like (x|¥) < e 1.
So 1 (x) and ¥, (x) should not be muddled together.
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~ _lpx
e Y(p) = \/%f dxe” n Y (x): the wave function in the momentum representation,

Eqg. (8.24). No dependence on x. The basis vectors are : |p).

We substitute l,b(x) = 6(x — xp) intoP(p) = \/_f dxe” 5 1/1(x) and obtain

I/J(P)—\/—fdxe 0 5(X—xo)——

However, one could imagine Ee “h to be valid for any x;. So, #—>=.

ipx _
Let us have a look at Eq. (8.25): ¥(x) = \/%f dp e v P(p).

_ipxg

1
* Ee h = l/)p(x)

- ipxg

Substitute the above expression Y (p) = \/%e_ i into the Eq. 8.25, with the result:
ip(x=xq)

Y(x) = —f dpe b

Then, with ¥ (x) = 6§ (x — x,) , the Dirac delta function:

ip (x—1x0)

1
8(x—x0) =5 [dpe
This expression for the Dirac delta function has the same form as the representation of the

d-function given above. However, to be the same, 6§ (x — x;) should have been
Lp(x ip(x—xp)

5(x —x0) = _fdp P
A factor h is missing in front of the integral §(x — x,), since,

lp(x ip(x—x0)

d
§(x —x9) = —f Pe
If wescale xin: 6&(x) = szoooeikxdk (Chisholm and Morris) with h, then,

ikx
o(x) = —f —e o and this §-function equals § (x — x,).

In Chisholm and Morrls, the integral representation of the §-function has been derived not
with help of quantum mechanics. The integral representation is derived in a pure
mathematical way. So, this §-function representation can be used to find the above-

; ing: 4 =
mentioned factor A, page 257. Not knowing: A = o e have

. Y@ = 8(x —xo).
) lpp(x)erpT. |
o F(p)=A[dxe (o).

We substitute 1 (x) = §(x — xo) into P (p) = A [ dxe_%tp(x) and obtain
ipxg

() = A [dxe n 8(x—xy) = Ae” h .
Furthermore, we have:

ipx
Y = 8(x—x) =A[dpen ().
With P (p) = Ae_wTo,

ip(x=x0)

5(x —xp) =A*[dpe
Use can be made of the integral representation for the §-function as derived by Chisholm
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N 1 .
and Morris with the result A% = py A subtle operation? | do not know.

In this Lecture Susskind summarizes the Heisenberg Uncertainty Principle elegantly. He
showed that the probability P(x) for a momentum eigenstate is uniformly spread over the x

axis: P(x) = Y5 (x) P, (x), and [ P(x)dx = [ 9 (x)p,(x)dx = fjooo lndx = 1.lsit?
£0.(8.25): Y(x) = = [ dp e v P(p).

2
ipx

We know ¥, (x) = \/%eT. Substitute this expression into Eq. 8.25 and we find ¥(x) =

J dp )y, (x); (x) = 8(x — xo).
So finally:
5(x —x9) = [dp lﬁ(p)t/)p (x). Is this to be expected?

Lecture 9. Particle Dynamics.

9.1 A Simple Example

To start with: the minus first law: States change in a way that information and distinctions
are never erased. This leads to the principle of unitary.

Now Susskind paid attention to: How do particles move in quantum mechanics?

Then Susskind introduced the Original Schrédinger Equation, a special case of Eq.(9.1),
representing the time-dependent Schrédinger equation.

A simple version of the Hamiltonian is analysed, Eq.(9.2)

With this simple Hamiltonian, the expectation value of position behaves according to
classical equations of motion.

Remark:

On page 276 Susskind derived the derivatives of a function depending on (x — ct). | feel a
oY d(x—ct) _ Iy

bit more comfortable by writing ;—xtp(x —ct) =

d(x—ct) ox  d(x—ct)
and
i _ oY 6(x—ct)__ Y
6tlp(x Ct)_a(x—ct) ac Ca(x—ct)'
Then,

) )
alp(x —ct) = —calp(x —ct).

Hence, for this whole family of solutions for 1, depending on x — ct we have the operator

0

5= —c;—x, [Susskind, Volume lIl, page 131, there the function ¥ (x + ct) is analysed)].

Notice that the d is missing on page 276 in the derivative :—x. A typo.

9.2 Non-relativistic Free Particles.

Remember: “Only massless particles can move at the velocity of light,....”.
Gravitons?

An important remark, page 280: “So, if you want to write down the quantum mechanical
equations of a system whose classical physics you already know, it’s very reasonable to try
using the classical Hamiltonian, translated into operator form”.

Here | also refer to Lectures 4.5 and 4.6, where the time dependent Schrédinger equation

86



has been derived, Eqg.(4.10)

2~ —iHw).
Starting with the classical formulation of the Hamiltonian, Pages 280 and 281, Susskind
presented the quantum mechanical equivalent in Eq.(9.4) for a nonrelativistic free particle.

Equal to the result presented in Eq.(4.10) and

9.3 Time-Independent Schrédinger Equation

In this Lecture the time-dependent Schrodinger-equation is solved. First the time-
independent Schrédinger-equation is solved.

On page 284 Susskind used the expression “eigenvectors”. | think it should be
eigenfunctions. We get used to it.

Exercise 9.1 The kinetic energy
Derive Eq. 9.7 by plugging Eq. 9.6 into Eq. 9.5.

ipx
Substitute (x) = e, into
02 8% (x)
— 2% - FyY((x).

2m  9x2

%Y(x) _ (ip

d0x2 ( ) l[)(x)

So,

_ 0%y _ p? -
o = o P () = EY().

Consequently,
p2

T om’

Nota bene: in this case ¥(x) = 1, (x) (See page 256) and Susskind writes (below Eq. (9.5)):
“..momentum eigenvectors do the job...”
Remark:

ipx . ipx ~
Instead of Y(x) = e ™1, we could also have substituted Y (x) = (p)e n , since Y(p) does
not explicitly depends on x.

On page 285 the time-dependent wave function is obtained.

Remark and (a lot of) Questions:
On page 285 Susskind derived(constructed) the time-dependent wave equation with help of
the time-independent Schrédinger equation. The momentum representation of the wave

function:
"—t)

_ - 2m
Y@, 1) = P(p) Z=exp ( )
where the factor Y (p) \/T_n , has been plugged in.

Instead of \/L_ we could plug into the expression for 1/Jp(x, t), 1/3(p) and obtain:

2
Y, (x, t) = P(p)exp ( “om) ). (See Remark above, after Exercise 9.1)
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Then Susskind writes: ”Any solution is a sum, or integral, of Y(x,t) = exp (

P (x,t) = [P(p)exp ( i )d
Well, intuitively | can understand this. However, | appreciate the following approach. With
Eq.(8.25) we have:

Lo .
¥p (1) = 7= [ P(p)dpexp ().

P, (x) is the time-independent wave equation in the coordinate presentation.
The time-dependent solution is

P, (x, t) = P, (x)exp (— iE—t) or with Eq.(9.7), E = p?/2m:

Yp(x,8) = == P(p)exp i )d |
Still, I am not sure. Why? WeII, using Eq.(8.25) for Y (x) and plug exp (— %) into the integral

we find the expression for (¢, x) or ¥, (¢, x). Is this correct? The expression exp (— iE?t)

2
depends on p through E = zp_m and the integral is over p.
pzt
Above | derived the expression ¥, (x,t) = P(p)exp ( ) )- To me it becomes a bit more

clear that, with the latter expressmn asumoverall p oran mtegral over p leads to

Wp(x,t) = [P(p)exp ( 2"‘ )d

On page 285 Susskind wrltes below the preceding expression: “You can start with any wave
function [p,(x)?] at t = 0, find Y (p) by Fourier transformation, and let it evolve.......... ”. This
simple general solution has an important implication. Among other things, it says that the
wave function in momentum-representation (lﬁ(p)?) changes with time in a remarkably
simple way:

.0 = Ppexp (T« (19.1)

Can this be right? Susskmd derived:

P, (6, 8) = [ P(p)exp ((zm) ‘ﬂ))d

Now we substitute the expression for i (p, t) into the above expression for Yp(x,t). We
find:

P (x,t) = [P(p,t))dp.

Well, this seems to be wrong. So? In Eq. (L9.1) Y (p, t) also depends on x. Consequently, the
phase changes in addition to t, with x. Or should {¥/(p, t) in Eq. (L9.1) be written as

D(p,t) = P(p)exp (— %)? Just like 1, (x, t) = P, (x)exp (— %)?
Or, again with Eq.(8.25),

2
P(p,t) = [Pp(n)ex p( o) )dx?
Here 1 (p, t) does not depend on x, and Y (x) is the position(or coordinate) representation

of the momentum wave function. Can we still denote ¥ (x) to be the wave functions
representing states in which the particle is located right at the position x; on the x axis
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(pages 253/254)? Then
Y(x) =8(x — x,) and
- i(~pxo-Lhy
P(p, €) = exp (—oo2m),
With Eq.(8.24) and Y (x) = §(x — x) we have
(o) = exp (— 223,
So,
~ ~ i Zt
Pp, ) = P(p) exp (- ).
| cannot explain the differences away. | doubt (L9.1) to be correct. A lot of questions indeed.
9.4 Velocity and Momentum
On page 286, Susskind presented the quantum mechanical formulation of the velocity.

Susskind advised to review Lecture 4, section 4.9.
It is about Eq.(4.17):

d i
L(Ly = L([H,L]).
2
Then, with H = :—m and L = X, Eq.(9.9) is obtained.

Exercise 9.2 A Commutator

Prove Eq. 9.10:

[P?,X] = P[P, X] + [P, X]P by expanding each side and comparing the results.
P[P,X] + [P, X]P = P2X — PXP + PXP — XP% = P2X — XP? = [P?,X].

For the velocity v we have v = %(11’|X|11’) = %(X).
Furthermore, we know, with Eq. 4.17:
d i
0 = 5 (H, XD,
Page 282: H = P—.
2m
Then,
=2 xy=__([p?
v =20 =L (P2 x)).
P[P, X] + [P,X]P = [P%X].
We also know [P, X] = —ih:
with [P2,X] = P[P, X] + [P, X]P
[P?,X] = —2ihP.

. ) d i P
For v we finally obtain: v = E<X> = %([PZ,X]) = %,
or (P) = mv, Eq.(9.11).
On page 288 below Eq.(9.11),Susskind writes: “The expectation value of x....”. Eq. (9.11) is
about the expectation value of P. Furthermore, Susskind writes: “What Eq. (9.11) tells us is
that the centre of the wave packet travels according to the classical rule p = mv.” So, is it
about the expectation value of x? | think it is. The confusion stems from the expectation
value of P.

9.5 Quantization
Susskind started this Lecture summarizing the results of Lecture 9 so far, the process of
guantization, briefly:
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- start with a classical system,

- replace the classical phase space with a linear vector space,

- replace the x’s and p’s by their operators,

- with these replacements, the Hamiltonian becomes an operator.

Susskind concluded this section: “Quantum theory is probably much more fundamental than
classical theory, which generally should be understood as an approximation”.

9.6 Forces
Susskind introduced the subject matter with the classical formulation of a force and the
related potential.

Remark:

On page 291 Susskind discusses the operator V and writes: “When the operator V acts on
any wave function Y (x), it multiplies the wave function by the function V (x)”. To make the
text comply with the expression below this text, the text should read: When the operator V
acts on the vector |¥) it multiplies the wave function ¥ (x) by the function V (x).

On page 293 Susskind writes: “But multiplying by x and multiplying by a function of x are
operations that commute. In other words: [X,V(x)] = 0”. Let’s have a look.

2
We start with Eq.(9.13): H = :—m + V(x).
What is of interest is the commutator [H, X]. Substitute the expression for H into the
commutator. The result is:

PZ
[H,X] = [, X| + [V, X].
Now, [V, X] or [X,V(x)] is zero when both X and V(x) are Hermitian. They are. Susskind
already proved X to be Hermitian. What about V? The operator for the potential energy V

can be written as a polynomial of X. Consequently [X,V(x)] = 0. See page 115.
This can also be illustrated by Eq. (9.17) with P replaced by X:

[X, VI (x) = xV (x)p(x) — V(x)xh(x) = 0.
Eqg. (9.15) is obtained with, Eq.(4.17):

%(L) = %([H, L]), and with Eq.(9.13) - Eq.(9.15) .

Exercise 9.3 Commutator of a potential function and the momentum operator
Show that the right-hand side of Eq. (9.17) simplifies to the right-hand sight of Eq.(9.16).
The right-hand side of Eq. (9.17):

Ve (—ih ) ) - (—ih ) V() =
Then, Eq.(9.16):

[V(x), Ply = ((h )

So, Eq.(9.16),

[V(x),P] = ih%.
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9.7 Linear Motion and the Classical Limit

Attention is paid to the difference between the average of a function and the function of the
average.

Susskind emphasized, on page 295, “.. the classical equations are only approximations, ...”.
In the legenda of Figure 9.3, page 296, Susskind writes: “Note (x) = 0, Ax > 0.” As defined
in Figure 8.2 ? | suppose so.

On the pages 296-301, Susskind discussed wave packets, potentials, and the uncertainty
relation.

9.8 Path Integrals

Feynman’s favourites. The principle of least action.

In this Lecture Susskind explained the least action principle starting with Volume | of the
Theoretical Minimum Series.

Action: the integral of the Lagrangian between the end points of the trajectory, bottom page
302.

Next, the step is made into the quantum mechanical world. Keeping in mind the uncertainty
principle, we deal with probabilities.

In EQ.(9.26), Susskind summarized Feynman’s formulation.

Remark:

At the bottom of page 307 the tiny time interval should read “€” instead of “e”. Typo.

Time dependency of the state is presented with H in the exponential expression instead of E
for the energy eigenvalue.

Lecture 10. Harmonic Oscillator.

This Lecture is about the classical and quantum mechanical description of the harmonic
oscillator. A basic ingredient of quantum mechanics.

On the pages 312 and 313, Susskind presented a couple of examples of the harmonic
oscillator.

Let us start by citing Dirac:” This different algebra for the dynamical variables is one of the
most important ways in which quantum mechanics differs from classical mechanics. We shall
see later that, despite this fundamental difference, the dynamical variables of quantum
mechanics still have many properties in common with their classical counterparts and it will
be possible to build up a theory of them closely analogous to the classical theory and forming
a beautiful generalization of it”.

Various examples of the harmonic oscillator can be found in Feynman Vol. |, Chapter 23.

10.1 The Classical Description

Susskind invited us “.. to imagine a very tiny version of a weight hanging from a spring”.
The Lagrangian of such a system is presented, Eq.(10.3). On page 315, Susskind use
Lagrange’s equation as presented in Volume I.
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Exercise 10.1 The derivatives of a general oscillatory function
Find the second derivative of x in Eq.(10.9), and thereby show that it solves Eq.(10.8).

Eq.(10.9):

x = Acos(wt) + Bsin(wt).

Then

% = —Aw? cos(wt) — Bw? sin(wt) = —w?x.

This represents Eq.(10.8).

10.2 The Quantum Mechanical Description
In this Lecture, Susskind analysed the microscopic harmonic oscillator. A couple of examples
are presented..

Remark:

Now that we are used to the conundrum of notations like 1 (x), ¥, (x), Y (p), [P (xX)),.....
|[Y(p)) and |¥), Susskind told us, page 317: “There are many possible system states, and
each one is represented by a different wave function”.

In Lecture 8 we learned the wave function for a particle moving on a line to be represented
by the Dirac Delta Function, page 253, Y (x) = §(x — x,). So, the above statement about
different wave functions is a general statement.

The Dirac Delta Function is just a mathematical construct to describe the position wave
function of a point-like particle. Well, we know there is no such thing as a point-like particle.
That is probably the reason why Susskind and Feynman used Dirac Delta Functions.
Approximations: a bell type curve or smeared out Dirac Delta Function. See the above
Exercise on normalization with Dirac Delta Functions Approximations in my notes on Lecture
8. Or is it the Heisenberg uncertainty principle that makes Feynman and Susskind choose a
bell type curved wave function?

Page 318: It is about “... a sensible wave function...”. Consequently, these functions need to
be “normalizable”.

The Hamiltonian is also derived from the Lagrangian. Then, the Hamiltonian is derived in
terms of operators, page 320.

10.3 The Schrédinger Equation
In this Lecture Susskind dealt with the time dependent Schrédinger Equation, Eq.(10.3),

derived in Lecture 4.5, Eq. (4.9) and with the correct dimensions in Eq. (4.10):

W2 = —iH|w).

With Eq.(10.12), and the preceding equation, Eq.(10.13) is obtained.

Eq.(10.13) can be solved numerically.

“....it will form a wave packet that moves around like a harmonic oscillator.”

Feynman, et al, presented the Schrédinger equation for the motion of a particle along a line.

See Vol. lll Chapter 16, page 16-4. Attention is paid to the history of the equation.
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10.4 Energy Levels

This Lecture is about calculating energy levels with the Hamiltonian.

A rehearsal of the Schrodinger Ket recipe of section 4.13 is advised.

On the top of page 323 two bullet points are given. The first mentions allowable values of E
and the second possible eigenvalues of the energy. May be the difference between
allowable and possible is subtle.

Examples of the one-dimensional solution of the Schrédinger Equation can be found in
Chapter 2 of the book by Mahan: “Quantum Mechanics in a Nutshell”.

On page 323 Susskind stated: “Physical solutions of the Schrédinger equation must be
normalizable.”
The issue here is: find those solutions.

10.5 The Ground State

The Lecture started with the question: “What is the lowest possible energy level for a
harmonic oscillator?”—"...and in fact, it has no state with zero energy either”.

The lowest energy level is a level to remember. It is called the ground state.

Susskind presented with Eq. (10.15) a wave function that works.

On page 326 and 327, Susskind derived the ground state energy, Eq.(10.16).

Remark about the ground state of the harmonic oscillator:
The ground state wave function:

w
Yo (x) = exp (_%xz), Eq.(10.15).
This wave function is not normalized.
We could normalize ¥, (x) in the usual way.

[ 2 s (Owedx = 1, Eq.(10.10).
With f_t:) e‘yzdy =1, and ,(x) = Aexp (—:)—hxz),
we have A = (%)1/4. Caveat: this normalization is done in the x-space, not the real world.

Susskind used the transformation x = v/my, where y represents the real world. Experiments
are done in the real world. So, what does Y¥(y) looks like? Using the transformation, we
have:
P(y) = Aexp(——-y?).
Normalization in the real world gives:

2 wm.1
A=OMED T,
On page 325 Susskind presented a guess for the ground state wave function of the harmonic
oscillator, Eq.(10.15). And indeed, it is a guess. It is also called a trial function. The only thing
you must do is to find out whether it works or not. Well, you can test this through
substitution in the Schrodinger equation. How did the professor know? Well, | do not know.
What we know is the potential of the harmonic oscillator to be a potential with the most
attractive region near x = 0. Consequently, the particle is most probably found in the region
near x = 0. So, the ground state wave function can be represented by a Gaussian
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distribution as given in Fig. 10.1 on page 325.

On the other hand, since the approach is basically a guess or approximation, the guess can
be tested by the so-called variational method to find the ground state
(www.hitoshi.berkeley.edu) .

But now something different. In this case we could use a representation of the Dirac Delta

Function (Chisholm and Morris): (x) = §(x) = %f_oooo et dk.

Then

% P(x) _
ax2

On page 326, Susskind showed the ground state wavefunction to be a good guess.

—k?(x). The linear representation of the oscillator.

10.6 Creation and Annihilation operators

At the beginning of this Lecture, Susskind reflected on the similarity of the Heisenberg and
the Schrodinger thinking about quantum mechanics. For the harmonic oscillator, the
operator method is the more powerful tool. The commutator relations are involved.

As expected, Susskind applied the operator method to the harmonic oscillator. The
commutation relation between the momentum operator and the position operator is
particularly useful. The creation and annihilation operators are constructed with P and X. At
the bottom of page 328, the action of the creation(raising) and annihilation(lowering)
operators are described.

On page 329, Eq.(10.18), Susskind starts working with the Hamiltonian for the harmonic
oscillator expressed in the momentum and position operators:

H= %(PZ + w2X?).

This expression for the Hamiltonian and at the bottom of page 330, it is shown how to
recover the actual Hamiltonian by adding %h . This additive factor can be ignored for now. On

top of page 332 Susskind plugged this constant back into the Hamiltonian operator.

On the basis of factorizing the Hamiltonian, the definitions of the lowering, a™ , and raising,
a’, operators are presented in Egs.(10.20) and (10.21).

In deriving Eqg. (10.23), the Hamiltonian,

1

H=wh(N+3)
use has been made of [X,P] = —[P,X] and N = ata".
With Egs.(10.20) and (10.21):

[at,a”] =a*a” —a a* = ﬁ{(P +iwX)(P — iwX) — (P — ioX)(P + iwX)} =

= th{zm[ax]} = ﬁ{Ziw(—ih}} =1.
Page 333 and page 334:

[at,N]=a*N - Na* =a*tata —a*a a® =a*(a*ta™ —a"a*).
The expression between brackets is the commutator of a* and a™:
[at,a™] = —[a",a™] = —1.
So, [a*,N] = —a®.
At the top of page 334, Eq.(10.25), the commutators for the harmonic oscillator are listed.
Then it is shown how the raising operator a®™ works. A kind of induction procedure is used.

The method of induction (Chisholm and Morris): assume the result to be true for one value
of n, say n = m, show that the expression for m + 1 is the same as the expression for
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n = m. Then it is true for all integral values of n.

Susskind writes, by definition, N|n) = n|n).

So,dowefind N|(n+ 1)) = (n+ 1)|(n + 1))?

Well, what we see is a new vector at|n) = |[n + 1), Eq.(10.27.

Is this the same as saying: the expression for n + 1 is the same as for n? What we can say is,
when we substitute for a®|n), the vector |n + 1) in Eq.(10.26), we find
N(n+1)=m+1D|(n+1)).

The preceding expression is similar to N|n) = n|n).

I am not convinced that this is a rigorous proof. Well, at least it be considered as an
application of the definition,

N|n) = n|n).

Exercise with raising(creation) operator
Again, a new vector is obtained by operating a* on the vector |(n + 1)). Then with the same procedure
given at the bottom of page 334:
N(a*|ln+1)=(a*N—(a*N—-Na*))|jn+ 1) =
=(a*N-(-a"))ln+1)=(a*N+a*)ln+1)=a*Nn+ 1)+ a*|n+ 1).
With
Ni(n+1)=mn+D|n+ D)
Na@atin+1) =at(n+Dn+1)+aln+1)=(n+2)at|n+ 1).
Like Eq.(10.27):
atin+1)=|n+2)
and,
N|(n+2)) = (n+ 2)|(n + 2)).

Now the lowering operator.

We start again with N|n) = n|n), and introduce a new vector a™|n). With the procedure at
the bottom of page 334 we have:

N(a"|n)) = (a"N—(a"N —Na™))|n) = a N|n) — a”|n).

With N|n) = n|n):

N(a~|n)) =a n|n)—a " |n) =(n—1)a " |n).

By the induction procedure of page 334, we obtain Eq.(10.28):

a’|n)=|n—1)

and

Ni(n—-1)) = (- 1|(n—-1)).

Susskind writes at the bottom of page 335: “What about the lowering operator? Not
surprisingly, we find that a™ |n) produces an eigenvector whose eigenvalue is one unit lower:
a”|n) = |(n—1)).”

As mentioned by Susskind this lowering cannot go on and the downward sequence must
end. To this end the ground state as the lowest energy state |0) must be introduced. A sort
of Archimedes ‘lever.

Susskind(page): “Being the lowest energy state, |0) is the ground state, and its energy is:

E, = %h (|0)) is an eigenvector of N with an eigenvalue 0”. This statement by Susskind is

wh

not quite clear to me. The energy of the ground-state |0) is: E, = -

95



h. .
So, consequently E, = % is an eigenvalue of |0).
However, following the statement of Susskind, |0) is an eigenvector of N with an eigenvalue
of zero. | think we learned from Lecture 10.5 :

E, = %h represents the ground-state energy and is an eigenvalue of H. This is illustrated by
H - %hN = %h | prefer instead of a~|0) = 0, Eq. 10.29, Na™|0) = 0|0). Then it is clear

E, = %h, being an eigenvalue of H.

On page 336 Susskind writes: “We often say that the ground-state is annihilated by a™ “.
Well, I just learned that the ground-state is the lowest allowable and possible value of E. So,
it appears to me that the effect of the operator a™ is annihilated. May be annihilated means
something special.

Also operating a™ on Y4 (x) resulted into the non-zero ground-state wave function

exp (— :)—hxz). The ground-state is certainly not annihilated. This came to me as a certain

wake up call. The operator for finding the observables is the Hamiltonian which can be
written as Eq. 10.22:

H = wh(a*a +3).

So, the raising and lowering operators are acting together.

| think the raising and lowering operators with the newly defined vectors a*|n), and a™|n)
are used to show the eigenvalues of the Hamiltonian change with integer steps. So, in this
way you can find the eigenvalue spectrum. These new vectors illustrate the way the eigen
vector spectrum can be found.

On page 335 in Fig. 10.2 a ‘ladder’ is shown. This ladder or the raising and lowering
operators are developed by Dirac. The combined operators are sometimes called the ladder
operator.

On the internet you can find nice pictures of the quantum harmonic oscillator.

On page 336 Susskind also writes: “It allowed us to find the entire spectrum of harmonic
oscillator energy levels without solving a single difficult equation”.

Well, almost. Susskind gave the solution for the ground state, Eq. (10.15) :

_@.2
P(x) = e"22" (not normalized and not in the real world) and derived the ground state

energy E, = %h, Eqg. (10.16) and (10.30) The normalized wave function of the ground-state is:

wm
o = (e

10.7 Back to Wave Functions

Susskind mentioned operator algebra to be rather abstract. To show the usefulness,
Eq.(10.29) is rewritten in terms of the position and momentum operators, page 337.

On page 339 the exited state of the harmonic oscillator has been derived, using the raising
operator:

P, = Ziwxe_%xz(not in the real world),

without the normalization factor for the ground-state in the x-space.

What does the expression for the exited state looks like in the real world? Well, the proof of
the pudding is in the eating. We follow the approach of Susskind on page 339 and write:
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wm_ -
Y

Y1) = (— s+ loVmy) (5 Vae ™2
where we used the ground-state Y, in the real world.

This leads to 1, (y) = Ziw\/ﬁy(%)l/“' exp(— %yz).

This exited wave function is not normalized. To correct this, we must multiply the raising
operator by the constant —i/m.

This indeed effects the numerical coefficient, the amplitude. By plugging this constant back
into the exited state 1;(y) , this state is normalized. Why bother? Well, reading and
comparing the results of Mahan on the harmonic oscillator you could get confused. In
addition, you can call it a numerical coefficient. However, it is part of the amplitude of the
eigenfunction. We learned the amplitude to be an important quantity in doing experiments:

the probability of finding a particle in the real world. So, for completeness | give the exited
wave function:

P1() = DFED 4y exp(—Z2y?),

or:
1
2 (mw\z
P10 =2 (Z2) ywo ).
On page 341 is written: “The ground-state eigenfunction e 2 ”. A typo. The ground-

state is: exp (— Zw—hxz) There Susskind mentioned the Hermite polynomials for the

eigenfunctions of the Schrédinger equation.

Mahan, page 30 and 31 presented the eigenfunction solution with Hermite polynomials,
Egs.(2.108)-(2.114).

First | summarize the results of Susskind for the ground state and the first two exited states:

_wx? _wx? h, _wx?
Yo X e zn Py X xe andlpzoc(xz—z)e 2n .

Now Mahan:

mwxz mwxz ma)xz

Yo Xe 2 P < xe 2z and, < (x? —ﬁ)e_ zh
Mahan has the mass m included. This is explained by Susskind by the definition where m is
absorbed in the new x on page 314.

10.8 The Importance of Quantization

In the last Lecture, Susskind painted a picture for future lectures, especially quantum field
theory. Susskind showed some examples like the oscillating electric and magnetic fields,
Figure 10.3.

The importance of frequency is mentioned: “...the frequency determines the quantum energy
of the oscillator.”

The elementary particle photon and its energy is introduced.

Susskind: “In the end, it all goes back to the harmonic oscillator”.

Epilogue
We learned about the Schrédinger equation. An equation describing the steady flow of
matter waves. Born reinterpreted the wave function as probabilities. This brought
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Schrodinger’s equation in line with Heisenberg’s indeterminacy. | do not know whether
Schrodinger appreciated that (Halpern). Reading Cox and Forshaw, | got the impression that
Schrodinger was not amused by the Born interpretation.

| leave Volume Il of the Theoretical Minimum Series. Let us look forward to the next volume
on Quantum Mechanics.

Remark: The next volume | laid my hands on is about Special Relativity and Classical Field
Theory, 2017.
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